# Convert_CompPolynomialToPoles Class Reference

Convert a serie of Polynomial N-Dimensional Curves that are have continuity CM to an N-Dimensional Bspline Curve that has continuity CM. (to convert an function (curve) polynomial by span in a BSpline) This class uses the following arguments : NumCurves : the number of Polynomial Curves Continuity: the requested continuity for the n-dimensional Spline Dimension : the dimension of the Spline MaxDegree : maximum allowed degree for each composite polynomial segment. NumCoeffPerCurve : the number of coefficient per segments = degree - 1 Coefficients : the coefficients organized in the following way [1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension] that is : index [n,d,i] is at slot (n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i PolynomialIntervals : nth polynomial represents a polynomial between myPolynomialIntervals->Value(n,0) and myPolynomialIntervals->Value(n,1) TrueIntervals : the nth polynomial has to be mapped linearly to be defined on the following interval : myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1) so that it represent adequatly the function with the required continuity. More...

`#include <Convert_CompPolynomialToPoles.hxx>`

## Public Member Functions

Convert_CompPolynomialToPoles (const Standard_Integer NumCurves, const Standard_Integer Continuity, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Handle< TColStd_HArray1OfInteger > &NumCoeffPerCurve, const Handle< TColStd_HArray1OfReal > &Coefficients, const Handle< TColStd_HArray2OfReal > &PolynomialIntervals, const Handle< TColStd_HArray1OfReal > &TrueIntervals)
Warning! Continuity can be at MOST the maximum degree of the polynomial functions TrueIntervals : this is the true parameterisation for the composite curve that is : the curve has myContinuity if the nth curve is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1) More...

Convert_CompPolynomialToPoles (const Standard_Integer NumCurves, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const TColStd_Array1OfInteger &Continuity, const TColStd_Array1OfInteger &NumCoeffPerCurve, const TColStd_Array1OfReal &Coefficients, const TColStd_Array2OfReal &PolynomialIntervals, const TColStd_Array1OfReal &TrueIntervals)
To Convert sevral span with different order of Continuity. Warning: The Length of Continuity have to be NumCurves-1. More...

Convert_CompPolynomialToPoles (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Integer Degree, const TColStd_Array1OfReal &Coefficients, const TColStd_Array1OfReal &PolynomialIntervals, const TColStd_Array1OfReal &TrueIntervals)
To Convert only one span. More...

Standard_Integer NbPoles () const
number of poles of the n-dimensional BSpline More...

void Poles (Handle< TColStd_HArray2OfReal > &Poles) const
returns the poles of the n-dimensional BSpline in the following format : [1..NumPoles][1..Dimension] More...

Standard_Integer Degree () const

Standard_Integer NbKnots () const
Degree of the n-dimensional Bspline. More...

void Knots (Handle< TColStd_HArray1OfReal > &K) const
Knots of the n-dimensional Bspline. More...

void Multiplicities (Handle< TColStd_HArray1OfInteger > &M) const
Multiplicities of the knots in the BSpline. More...

Standard_Boolean IsDone () const

## Detailed Description

Convert a serie of Polynomial N-Dimensional Curves that are have continuity CM to an N-Dimensional Bspline Curve that has continuity CM. (to convert an function (curve) polynomial by span in a BSpline) This class uses the following arguments : NumCurves : the number of Polynomial Curves Continuity: the requested continuity for the n-dimensional Spline Dimension : the dimension of the Spline MaxDegree : maximum allowed degree for each composite polynomial segment. NumCoeffPerCurve : the number of coefficient per segments = degree - 1 Coefficients : the coefficients organized in the following way [1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension] that is : index [n,d,i] is at slot (n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i PolynomialIntervals : nth polynomial represents a polynomial between myPolynomialIntervals->Value(n,0) and myPolynomialIntervals->Value(n,1) TrueIntervals : the nth polynomial has to be mapped linearly to be defined on the following interval : myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1) so that it represent adequatly the function with the required continuity.

## ◆ Convert_CompPolynomialToPoles() [1/3]

 Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer NumCurves, const Standard_Integer Continuity, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Handle< TColStd_HArray1OfInteger > & NumCoeffPerCurve, const Handle< TColStd_HArray1OfReal > & Coefficients, const Handle< TColStd_HArray2OfReal > & PolynomialIntervals, const Handle< TColStd_HArray1OfReal > & TrueIntervals )

Warning! Continuity can be at MOST the maximum degree of the polynomial functions TrueIntervals : this is the true parameterisation for the composite curve that is : the curve has myContinuity if the nth curve is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1)

Coefficients have to be the implicit "c form": Coefficients[Numcurves][MaxDegree+1][Dimension]

Warning! The NumberOfCoefficient of an polynome is his degree + 1 Example: To convert the linear function f(x) = 2*x + 1 on the domaine [2,5] to BSpline with the bound [-1,1]. Arguments are : NumCurves = 1; Continuity = 1; Dimension = 1; MaxDegree = 1; NumCoeffPerCurve [1] = {2}; Coefficients[2] = {1, 2}; PolynomialIntervals[1,2] = {{2,5}} TrueIntervals[2] = {-1, 1}

## ◆ Convert_CompPolynomialToPoles() [2/3]

 Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer NumCurves, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const TColStd_Array1OfInteger & Continuity, const TColStd_Array1OfInteger & NumCoeffPerCurve, const TColStd_Array1OfReal & Coefficients, const TColStd_Array2OfReal & PolynomialIntervals, const TColStd_Array1OfReal & TrueIntervals )

To Convert sevral span with different order of Continuity. Warning: The Length of Continuity have to be NumCurves-1.

## ◆ Convert_CompPolynomialToPoles() [3/3]

 Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Integer Degree, const TColStd_Array1OfReal & Coefficients, const TColStd_Array1OfReal & PolynomialIntervals, const TColStd_Array1OfReal & TrueIntervals )

To Convert only one span.

## ◆ Degree()

 Standard_Integer Convert_CompPolynomialToPoles::Degree ( ) const

## ◆ IsDone()

 Standard_Boolean Convert_CompPolynomialToPoles::IsDone ( ) const

## ◆ Knots()

 void Convert_CompPolynomialToPoles::Knots ( Handle< TColStd_HArray1OfReal > & K ) const

Knots of the n-dimensional Bspline.

## ◆ Multiplicities()

 void Convert_CompPolynomialToPoles::Multiplicities ( Handle< TColStd_HArray1OfInteger > & M ) const

Multiplicities of the knots in the BSpline.

## ◆ NbKnots()

 Standard_Integer Convert_CompPolynomialToPoles::NbKnots ( ) const

Degree of the n-dimensional Bspline.

## ◆ NbPoles()

 Standard_Integer Convert_CompPolynomialToPoles::NbPoles ( ) const

number of poles of the n-dimensional BSpline

## ◆ Poles()

 void Convert_CompPolynomialToPoles::Poles ( Handle< TColStd_HArray2OfReal > & Poles ) const

returns the poles of the n-dimensional BSpline in the following format : [1..NumPoles][1..Dimension]

The documentation for this class was generated from the following file: