ﬂ/ TECHNOLOGY

Training:
Geometry

MVC. Model-View-Controller

Open CASCADE Technology provides a set of classes the user can apply "as is" or extend by adding
custom classes.

The classes dealing with some concept (such as geometrical entities) are usually grouped by the
implementation layer:
Model, View, and Controller:

Model

(View) (Controller)

Visualization for the end user Non-standard creation,

high-level management

Each layer is implemented in the corresponding package that in turn contain classes and functions.

MVC. Example

Example: concept of a 2D circle.

Model:

A data object containing an center and a radius.
The standard direct constructors: default constructor, constructor with an point and a radius, etc.

Controller:

To build a circle passing 3 points.
To build a circle with a center and tangent to a line.

Note: Each controller class has a method to return the abstract data object.
View:

» The object you display in a viewer.

MVC. Discussion

As usual, there are some advantages and disadvantages.
Advantages:
* Model is perennial: new control classes can be added without changing the model class.

* Model is minimal: instances of controller classes are created when needed during the program execution.

Disadvantages:

* Sometimes, it is difficult to find a class solving a particular problem.

MVC. Implementation of controller classes

The variety of controller classes implemented in Open CASCADE Technology for geometrical and topological
objects include:

» Direct construction (gce_MakeCircle, gce_MakeLin2d).
« Construction by constraints in 2D (GccAna_Circ2d2TanRad).

« Complex construction algorithms: interpolation approximation, projection (GeomAPI package).

Non-parametric and parametric geometry

Additional information can be found in documentation:

[]

Non-parametric geometry

These types are manipulated by value.

These classes have no inheritance.

Foundation Classes User's Guide.
Modeling Data User's Guide.
Modeling Algorithms User's Guide.

Parametric geometry

 Entities from Geom (Geom2d) are manipulated by
Handle (useful for data sharing), while controller classes
are manipulated by value.

« Hierarchy of classes in general follows STEP (ISO 10303)
standard.

* Provide methods to go back and forth from Geom to gp

Additional information can be found in documentation:
* Modeling Data User's Guide.
* Modeling Algorithms User's Guide.

Non-parametric geometry

Model classes (two-dimensional classes are available via adding “2d” suffix, gp_Pnt2d):

* gp_Pnt — Cartesian point.

* gp_Vec — Vector.

* gp_Dir - Direction (non-null vector with magnitude equal to 1.0).

* gp_Trsf —Euclidean transformation. It is possible to set translation, rotation, and scaling independently.
* gp_AxT — Axis. Axis is point plus direction.

* gp_Lin, gp_Circ, gp_Elips, gp_Hypr, gp_Parab, gp_Cylinder, gp_Sphere, gp_Torus
— primitives representing curves and surfaces.

Controller classes:
* Direct construction — gce_MakeCircle, gce_Makelin

« Constrained construction (2d only) - GccAna_Circ2d2TanRad

Limitation of non-parametric geometry

Non-parametric geometry provides useful set classes, but there are some principle limitations with them:

Typical geometric questions cannot be answered:
* What is the value of curvature at this point?
* What is the tangent vector to curve at this point?
* What is the minimum Euclidean distance between the curve and the given point?
* Do these objects intersect?

Some objects are infinite, and there is no way to make them finite:

Line, Hyperbola, Parabola.

Plane, Cylinder.

It is not possible to represent free-form and non-trivial objects:

How to represent aircraft fuselage? (Bezier and B-spline).

How to represent offset surface? (normal is required).

How to represent sweeping surfaces? (linear extrusion and revolution).

Parametric geometry

Model classes (two-dimensional classes are available in the Geom2d package):

Curves — descendants of the Geom_Curve:
« Geom_Line
* Conics: Geom_Circle, Geom_Ellipse, Geom_Hyperbola, Geom_Parabola
* Free-form: Geom_BSplineCurve, Geom_BezierCurve
« Geom_QOffsetCurve
» Trimming concept: Geom_TrimmedCurve

Surface - descendants of the Geom_Surface:

« Elementary surfaces: Geom_Plane, Geom_CylindricalSurface, Geom_SphericalSurface,
Geom_ToroildalSurface, Geom_ConicalSurface

* Free-form: Geom_BSplineSurface, Geom_BezierSurface

« Sweeping surfaces: Geom_SurfaceOflLinearExtrusion, Geom_SurfaceOfRevolution
« Geom_OffsetSurface

« Trimming concept: Geom_RectangularTrimmedSurface

Parametric geometry

Controller classes (two-dimensional classes are available via adding “2d" suffix to package name, gce2d):
» Direct construction- gce_MakeCircle, gce2d_MakeCircle

« Constrained construction (2d only) - Geom2dGcc_Circl2d3Tan

rﬁ’fzﬁ*ﬁ’i’fﬂf&ﬁﬁ-’fff{f/ >
a b t

Trimming concept

Some parametric objects, like line (Geom_L1ine) or plane (Geom_P1ane), are infinite as their non-
parametric counterparts. How to bound them?

« Curve — bound using starting and finishing parameter — Geom_TrimmedCurve

« Surface — bound using rectangular domain — Geom_RectangularTrimmedSurface

The OCCT has no protection from surface evaluation outside boundaries. This functionality is used in high-
level algorithms such as offset algorithm, but it is recommended to avoid evaluation outside the parametric
domain.

> > >

original domain u original and requested u resulting domain u
domains

Constraint geometry in 2D

In Open CASCADE Technology, a curve (or a contour) in 2D has an implicit orientation, and the notion of "interior
area" is defined.

By convention, the interior of a curve is on the left according to the positive direction of the curve's description.
Constraint geometry creation involves qualification of the arguments, in terms of their position relatively to the
solution:

Outside - the solution and the argument are outside each other.
Enclosing - the solution encompasses the argument.

Enclosed - the solution is encompassed by the argument.

Qualification of arguments

If C1 and C2 are the arguments, the problem of determining a line tangent to C1 and C2 has 4 solutions.
These solutions can be reached by outside and enclosing positioning. Enc Llosed positioning leads to
an exception since line cannot be inside a circle.

Qualification of arguments

C1 C2

C1 - enclosing
C2 - outside

C1

C1 - enclosing
C2 - enclosing

C2

Qualification of arguments

C1 C2

C1 - outside
C2 - outside

C1

C1 - outside
C2 - enclosing

C2

Implementation

List of packages used for creation of constraint geometry:
GccAna - Algorithm classes for basic geometry.
GeomZ2dGece - Algorithm classes for advanced geometry.

GceEnt - Methods and types for arguments qualification.

Example:
#include <GccEnt.hxx>

#include <GccAna Circ2d2TanRad.hxx>
void ToDo (const gp Circ2d& aCl, const gp Circ2d& aC2)
{
GccAna CircZd2TanRad aSolCirc (GecEnt::Outside (aCl), GecEnt::Enclosing (aC2),
aRadius, aTolerance);

if (aSolCirc.IsDone())

{
for (Standard Integer 1 = 1; 1 <= aSolCirc.NbSolutions(); 1i++)

{
gp CircZd aCircle = aSolCirc.ThisSolution (i) ;

}

Floating point: implementation and limitations

Modern computers use IEEE 754 as the way to represent real numbers (alternatives are logarithmic number
systems, interval arithmetic, unum / posit). According to the standard real value is represented in the

following form:
value = significand - base®*Ponent

Where significand and exponent are integers. Example:
5.4321 = 54321 -107*

The table below demonstrates bits distribution in common types:

Significand(bits) exponent (bits)

8
11

float 24
double 53

Fixed bits number for precision leads to rounding and presentation errors. So, each algorithm using floating
point should be accompanied with tolerance value to cover these errors.

Geometric tolerance and precision

OCCT provides set of geometric tolerances aimed to overcome floating point problems. The are located in the
Precision package:

__ype | vale | _usage

Confusion 1.0e-7 Distances in 3d
PConfusion Confusion * 0.01 Distances in parametric space
Angular 1.0e-12 Angles equality

Example:

// Returns true when the given point is located in origin.
static Standard Boolean IsOrigin(const gp Pnt& thePnt)
{
const gp Pnt& anOrigin = gp::0rigin();
if (anOrigin.Distance(thePnt) < Precision::Confusion())
return Standard True;

return Standard False;

Interpolation vs approximation

Interpolation Approximation

Interpolation is finding a polynomial which passes Approximation is process of polynomial construction which is

through all points. close to a given set of points but not exactly passes through
them. The approximation algorithm has the following

The typical problems with them are: drawbacks:

* High order polynomial in result (depends on

X i) e It is much more computationally intensive comparing to
interpolation algorithm). P y paring

interpolation.

* Complex result. * Requires more efforts to tune parameters comparing to

+ Oscillations are possible. interpolation.

Curve interpolation

The OCCT provides curve interpolation algorithm. It is possible to run it with and without parameters
associated to points. The usage is simple as:

// Prepare data to be converted.
Standard Integer aPos = 1;
Handle (TColgp HArraylOfPnt) aPnts = new TColgp HArraylOfPnt (1, 100);

// Fill points

// Launch interpolation algorithm.
GeomAPI Interpolate anlInterpolator (aPnts, Standard False, Precision::Confusion());

anInterpolator.Perform() ;

// Check done state.
if (!'anInterpolator.IsDone())

{

std::cout << "Error: interpolation failed." << std::endl;
return 0;

}

Handle (Geom BSplineCurve) aCurve = anlnterpolator.Curve();

Curve interpolation with tangents

Interpolation problem has infinite solutions:

Particular solution can be chosen using tangents at the starting and final points:

GeomAPI Interpolate anlInterpolator (aPnts, Standard False, Precision::Confusion());
anInterpolator.Load(gp Vec (1.0, 0.0, 0.0),

gp Vec(0.0, 1.0, 0.0)); // Load tangents.
anInterpolator.Perform() ;

Curve approximation

OCCT has approximation built-in curve approximation algorithm. It can be used as follows:

// Construct array to be approximated.
TColgp ArraylOfPnt abPnts (1, 100);

// Fill points.

GeomAPI PointsToBSpline anApproximator;
anApproximator.Init (abnts, 1.0, 0.0, 0.0, 8, GeomAbs C2, 0.001);

1if (!anApproximator.IsDone())

{
std::cout << "Error: approximation failed." << std::endl;
return O;

}

Handle (Geom Curve) aCurve = anApproximator.Curve();

Surface interpolation

The OCCT supports surface interpolation using input table of points:

// Table of points.
TColgp Array20fPnt abnt(l, 3, 1, 3);

// Fill points.

// Run interpolator.
GeomAPI PointsToBSplineSurface aSurfMaker (aPnt);
if (!'aSurfMaker.IsDone ())

{

std::cout << "Error: Surface construction error" << std::endl;
return 0;

}

Handle (Geom BSplineSurface) aBsplineSurf = aSurfMaker.Surface();

Point projection on curve

OCCT contains various projection algorithms such as projection of point on curve or projection curve on
surface. Unlike interpolation algorithm, sometimes projection does not exist:

Projection
does not exist

Projection exists

Point projection on surface

Point can be projected not only a curve but also on a surface. The following piece of code demonstrates this
functionality:

// Prepare surface.
Handle (Geom Surface) aSurface = ...;

// Project point on surface.
gp Pnt abPnt = ...;

// Project point on surface.

GeomAPI ProjectPointOnSurf aProjector;
aProjector.Init (aPnt, aSurface);

gp Pnt aNPnt = aProjector.NearestPoint();

Sometimes, several projections exist. In that case it is necessary to iterate over candidates to get dedicated
solution.

const Standard Integer aNbSol = aProjector.NbPoints();
for(Standard Integer anldx = 1; anldx <= aNbSol; ++anldx)

{
gp Pnt aSol = aProjector.Point (anldx) ;

}

About Open Cascade

It is a software development company which is laser-focused on digital transformation of industries through
the use of 3D technologies.

Open Cascade offers a wide range of high-performance proprietary 3D software tools both open-source and
commercial. The first ones have been developed, maintained and continuously improved since 2000. Whereas
the second ones have been progressively aggregated in the Commercial Platform based on which the company
offers creating modern tailor-made industrial solutions that meet even the most sophisticated client'’s
requirements.

Moreover, Open Cascade expands its portfolio by offering end-user industrial software products and delivering
software customization and integration services. Open Cascade provides its solutions and services worldwide.
The company is a part of the Capgemini’s Digital Engineering and Manufacturing Services global business line.

Learn more about Open Cascade at ~ Www.opencascade.com

OPEN
o CASCADE

Backing your path to digital future

