
void  SetAxis (const gp_Ax1 &theA1) 
 Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed. More...


void  SetLocation (const gp_Pnt &theP) 
 changes the location point of the conic. More...


void  SetPosition (const gp_Ax2 &theA2) 
 changes the local coordinate system of the conic. More...


const gp_Ax1 &  Axis () const 
 Returns the "main Axis" of this conic. This axis is normal to the plane of the conic. More...


const gp_Pnt &  Location () const 
 Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola. More...


const gp_Ax2 &  Position () const 
 Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u. More...


virtual Standard_Real  Eccentricity () const =0 
 Returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola Exceptions Standard_DomainError in the case of a hyperbola if its major radius is null. More...


gp_Ax1  XAxis () const 
 Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic. More...


gp_Ax1  YAxis () const 
 Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic. More...


void  Reverse () override 
 Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified. More...


virtual Standard_Real  ReversedParameter (const Standard_Real U) const override=0 
 Returns the parameter on the reversed curve for the point of parameter U on <me>. More...


GeomAbs_Shape  Continuity () const override 
 The continuity of the conic is Cn. More...


Standard_Boolean  IsCN (const Standard_Integer N) const override 
 Returns True. Raised if N < 0. More...


virtual void  DumpJson (Standard_OStream &theOStream, Standard_Integer theDepth=1) const override 
 Dumps the content of me into the stream. More...


virtual Standard_Real  TransformedParameter (const Standard_Real U, const gp_Trsf &T) const 
 Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>. More...


virtual Standard_Real  ParametricTransformation (const gp_Trsf &T) const 
 Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>. More...


Handle< Geom_Curve >  Reversed () const 
 Returns a copy of <me> reversed. More...


virtual Standard_Real  FirstParameter () const =0 
 Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite. More...


virtual Standard_Real  LastParameter () const =0 
 Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite. More...


virtual Standard_Boolean  IsClosed () const =0 
 Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp wich is a fixed criterion independant of the application. More...


virtual Standard_Boolean  IsPeriodic () const =0 
 Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic. More...


virtual Standard_Real  Period () const 
 Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic. More...


virtual void  D0 (const Standard_Real U, gp_Pnt &P) const =0 
 Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U  Uend) where Ustart and Uend are the parametric bounds of the curve. More...


virtual void  D1 (const Standard_Real U, gp_Pnt &P, gp_Vec &V1) const =0 
 Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1. More...


virtual void  D2 (const Standard_Real U, gp_Pnt &P, gp_Vec &V1, gp_Vec &V2) const =0 
 Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2. More...


virtual void  D3 (const Standard_Real U, gp_Pnt &P, gp_Vec &V1, gp_Vec &V2, gp_Vec &V3) const =0 
 Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3. More...


virtual gp_Vec  DN (const Standard_Real U, const Standard_Integer N) const =0 
 The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN. More...


gp_Pnt  Value (const Standard_Real U) const 
 Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U  Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0. More...


void  Mirror (const gp_Pnt &P) 
 Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry. More...


void  Mirror (const gp_Ax1 &A1) 
 Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry. More...


void  Mirror (const gp_Ax2 &A2) 
 Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection). More...


void  Rotate (const gp_Ax1 &A1, const Standard_Real Ang) 
 Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians. More...


void  Scale (const gp_Pnt &P, const Standard_Real S) 
 Scales a Geometry. S is the scaling value. More...


void  Translate (const gp_Vec &V) 
 Translates a Geometry. V is the vector of the tanslation. More...


void  Translate (const gp_Pnt &P1, const gp_Pnt &P2) 
 Translates a Geometry from the point P1 to the point P2. More...


virtual void  Transform (const gp_Trsf &T)=0 
 Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom). More...


Handle< Geom_Geometry >  Mirrored (const gp_Pnt &P) const 

Handle< Geom_Geometry >  Mirrored (const gp_Ax1 &A1) const 

Handle< Geom_Geometry >  Mirrored (const gp_Ax2 &A2) const 

Handle< Geom_Geometry >  Rotated (const gp_Ax1 &A1, const Standard_Real Ang) const 

Handle< Geom_Geometry >  Scaled (const gp_Pnt &P, const Standard_Real S) const 

Handle< Geom_Geometry >  Transformed (const gp_Trsf &T) const 

Handle< Geom_Geometry >  Translated (const gp_Vec &V) const 

Handle< Geom_Geometry >  Translated (const gp_Pnt &P1, const gp_Pnt &P2) const 

virtual Handle< Geom_Geometry >  Copy () const =0 
 Creates a new object which is a copy of this geometric object. More...


Public Member Functions inherited from Standard_Transient 
 Standard_Transient () 
 Empty constructor. More...


 Standard_Transient (const Standard_Transient &) 
 Copy constructor – does nothing. More...


Standard_Transient &  operator= (const Standard_Transient &) 
 Assignment operator, needed to avoid copying reference counter. More...


virtual  ~Standard_Transient () 
 Destructor must be virtual. More...


virtual void  Delete () const 
 Memory deallocator for transient classes. More...


virtual const opencascade::handle< Standard_Type > &  DynamicType () const 
 Returns a type descriptor about this object. More...


Standard_Boolean  IsInstance (const opencascade::handle< Standard_Type > &theType) const 
 Returns a true value if this is an instance of Type. More...


Standard_Boolean  IsInstance (const Standard_CString theTypeName) const 
 Returns a true value if this is an instance of TypeName. More...


Standard_Boolean  IsKind (const opencascade::handle< Standard_Type > &theType) const 
 Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism. More...


Standard_Boolean  IsKind (const Standard_CString theTypeName) const 
 Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism. More...


Standard_Transient *  This () const 
 Returns nonconst pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero. More...


Standard_Integer  GetRefCount () const 
 Get the reference counter of this object. More...


void  IncrementRefCounter () const 
 Increments the reference counter of this object. More...


Standard_Integer  DecrementRefCounter () const 
 Decrements the reference counter of this object; returns the decremented value. More...

