#include <AppDef_ParFunctionOfMyGradientbisOfBSplineCompute.hxx>
|
| AppDef_ParFunctionOfMyGradientbisOfBSplineCompute (const AppDef_MultiLine &SSP, const Standard_Integer FirstPoint, const Standard_Integer LastPoint, const Handle< AppParCurves_HArray1OfConstraintCouple > &TheConstraints, const math_Vector &Parameters, const Standard_Integer Deg) |
| initializes the fields of the function. The approximating curve has the desired degree Deg.
|
|
Standard_Integer | NbVariables () const |
| returns the number of variables of the function. It corresponds to the number of MultiPoints.
|
|
Standard_Boolean | Value (const math_Vector &X, Standard_Real &F) |
| this method computes the new approximation of the MultiLine SSP and calculates F = sum (||Pui - Bi*Pi||2) for each point of the MultiLine.
|
|
Standard_Boolean | Gradient (const math_Vector &X, math_Vector &G) |
| returns the gradient G of the sum above for the parameters Xi.
|
|
Standard_Boolean | Values (const math_Vector &X, Standard_Real &F, math_Vector &G) |
| returns the value F=sum(||Pui - Bi*Pi||)2. returns the value G = grad(F) for the parameters Xi.
|
|
const math_Vector & | NewParameters () const |
| returns the new parameters of the MultiLine.
|
|
const AppParCurves_MultiCurve & | CurveValue () |
| returns the MultiCurve approximating the set after computing the value F or Grad(F).
|
|
Standard_Real | Error (const Standard_Integer IPoint, const Standard_Integer CurveIndex) const |
| returns the distance between the MultiPoint of range IPoint and the curve CurveIndex.
|
|
Standard_Real | MaxError3d () const |
| returns the maximum distance between the points and the MultiCurve.
|
|
Standard_Real | MaxError2d () const |
| returns the maximum distance between the points and the MultiCurve.
|
|
AppParCurves_Constraint | FirstConstraint (const Handle< AppParCurves_HArray1OfConstraintCouple > &TheConstraints, const Standard_Integer FirstPoint) const |
|
AppParCurves_Constraint | LastConstraint (const Handle< AppParCurves_HArray1OfConstraintCouple > &TheConstraints, const Standard_Integer LastPoint) const |
|
virtual Standard_Integer | GetStateNumber () |
| return the state of the function corresponding to the latestt call of any methods associated to the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
|
|
virtual | ~math_MultipleVarFunction () |
|
◆ AppDef_ParFunctionOfMyGradientbisOfBSplineCompute()
initializes the fields of the function. The approximating curve has the desired degree Deg.
◆ CurveValue()
returns the MultiCurve approximating the set after computing the value F or Grad(F).
◆ Error()
returns the distance between the MultiPoint of range IPoint and the curve CurveIndex.
◆ FirstConstraint()
◆ Gradient()
◆ LastConstraint()
◆ MaxError2d()
Standard_Real AppDef_ParFunctionOfMyGradientbisOfBSplineCompute::MaxError2d |
( |
| ) |
const |
returns the maximum distance between the points and the MultiCurve.
◆ MaxError3d()
Standard_Real AppDef_ParFunctionOfMyGradientbisOfBSplineCompute::MaxError3d |
( |
| ) |
const |
returns the maximum distance between the points and the MultiCurve.
◆ NbVariables()
Standard_Integer AppDef_ParFunctionOfMyGradientbisOfBSplineCompute::NbVariables |
( |
| ) |
const |
|
virtual |
◆ NewParameters()
const math_Vector & AppDef_ParFunctionOfMyGradientbisOfBSplineCompute::NewParameters |
( |
| ) |
const |
returns the new parameters of the MultiLine.
◆ Perform()
void AppDef_ParFunctionOfMyGradientbisOfBSplineCompute::Perform |
( |
const math_Vector & |
X | ) |
|
|
protected |
this method is used each time Value or Gradient is needed.
◆ Value()
this method computes the new approximation of the MultiLine SSP and calculates F = sum (||Pui - Bi*Pi||2) for each point of the MultiLine.
Implements math_MultipleVarFunctionWithGradient.
◆ Values()
The documentation for this class was generated from the following file: