Open CASCADE Technology 7.8.0
Public Member Functions | Protected Member Functions
AppDef_ResConstraintOfMyGradientbisOfBSplineCompute Class Reference

#include <AppDef_ResConstraintOfMyGradientbisOfBSplineCompute.hxx>

Public Member Functions

 AppDef_ResConstraintOfMyGradientbisOfBSplineCompute (const AppDef_MultiLine &SSP, AppParCurves_MultiCurve &SCurv, const Standard_Integer FirstPoint, const Standard_Integer LastPoint, const Handle< AppParCurves_HArray1OfConstraintCouple > &Constraints, const math_Matrix &Bern, const math_Matrix &DerivativeBern, const Standard_Real Tolerance=1.0e-10)
 Given a MultiLine SSP with constraints points, this algorithm finds the best curve solution to approximate it. The poles from SCurv issued for example from the least squares are used as a guess solution for the uzawa algorithm. The tolerance used in the Uzawa algorithms is Tolerance. A is the Bernstein matrix associated to the MultiLine and DA is the derivative bernstein matrix.(They can come from an approximation with ParLeastSquare.) The MultiCurve is modified. New MultiPoles are given.
 
Standard_Boolean IsDone () const
 returns True if all has been correctly done.
 
Standard_Real Error () const
 returns the maximum difference value between the curve and the given points.
 
const math_MatrixConstraintMatrix () const
 
const math_VectorDuale () const
 returns the duale variables of the system.
 
const math_MatrixConstraintDerivative (const AppDef_MultiLine &SSP, const math_Vector &Parameters, const Standard_Integer Deg, const math_Matrix &DA)
 Returns the derivative of the constraint matrix.
 
const math_MatrixInverseMatrix () const
 returns the Inverse of Cont*Transposed(Cont), where Cont is the constraint matrix for the algorithm.
 

Protected Member Functions

Standard_Integer NbConstraints (const AppDef_MultiLine &SSP, const Standard_Integer FirstPoint, const Standard_Integer LastPoint, const Handle< AppParCurves_HArray1OfConstraintCouple > &TheConstraints) const
 is used internally to create the fields.
 
Standard_Integer NbColumns (const AppDef_MultiLine &SSP, const Standard_Integer Deg) const
 is internally used for the fields creation.
 

Constructor & Destructor Documentation

◆ AppDef_ResConstraintOfMyGradientbisOfBSplineCompute()

AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::AppDef_ResConstraintOfMyGradientbisOfBSplineCompute ( const AppDef_MultiLine SSP,
AppParCurves_MultiCurve SCurv,
const Standard_Integer  FirstPoint,
const Standard_Integer  LastPoint,
const Handle< AppParCurves_HArray1OfConstraintCouple > &  Constraints,
const math_Matrix Bern,
const math_Matrix DerivativeBern,
const Standard_Real  Tolerance = 1.0e-10 
)

Given a MultiLine SSP with constraints points, this algorithm finds the best curve solution to approximate it. The poles from SCurv issued for example from the least squares are used as a guess solution for the uzawa algorithm. The tolerance used in the Uzawa algorithms is Tolerance. A is the Bernstein matrix associated to the MultiLine and DA is the derivative bernstein matrix.(They can come from an approximation with ParLeastSquare.) The MultiCurve is modified. New MultiPoles are given.

Member Function Documentation

◆ ConstraintDerivative()

const math_Matrix & AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::ConstraintDerivative ( const AppDef_MultiLine SSP,
const math_Vector Parameters,
const Standard_Integer  Deg,
const math_Matrix DA 
)

Returns the derivative of the constraint matrix.

◆ ConstraintMatrix()

const math_Matrix & AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::ConstraintMatrix ( ) const

◆ Duale()

const math_Vector & AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::Duale ( ) const

returns the duale variables of the system.

◆ Error()

Standard_Real AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::Error ( ) const

returns the maximum difference value between the curve and the given points.

◆ InverseMatrix()

const math_Matrix & AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::InverseMatrix ( ) const

returns the Inverse of Cont*Transposed(Cont), where Cont is the constraint matrix for the algorithm.

◆ IsDone()

Standard_Boolean AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::IsDone ( ) const

returns True if all has been correctly done.

◆ NbColumns()

Standard_Integer AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::NbColumns ( const AppDef_MultiLine SSP,
const Standard_Integer  Deg 
) const
protected

is internally used for the fields creation.

◆ NbConstraints()

Standard_Integer AppDef_ResConstraintOfMyGradientbisOfBSplineCompute::NbConstraints ( const AppDef_MultiLine SSP,
const Standard_Integer  FirstPoint,
const Standard_Integer  LastPoint,
const Handle< AppParCurves_HArray1OfConstraintCouple > &  TheConstraints 
) const
protected

is used internally to create the fields.


The documentation for this class was generated from the following file: