Open CASCADE Technology 7.8.0
|
Convert a serie of Polynomial N-Dimensional Curves that are have continuity CM to an N-Dimensional Bspline Curve that has continuity CM. (to convert an function (curve) polynomial by span in a BSpline) This class uses the following arguments : NumCurves : the number of Polynomial Curves Continuity: the requested continuity for the n-dimensional Spline Dimension : the dimension of the Spline MaxDegree : maximum allowed degree for each composite polynomial segment. NumCoeffPerCurve : the number of coefficient per segments = degree - 1 Coefficients : the coefficients organized in the following way [1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension] that is : index [n,d,i] is at slot (n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i PolynomialIntervals : nth polynomial represents a polynomial between myPolynomialIntervals->Value(n,0) and myPolynomialIntervals->Value(n,1) TrueIntervals : the nth polynomial has to be mapped linearly to be defined on the following interval : myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1) so that it represent adequatly the function with the required continuity. More...
#include <Convert_CompPolynomialToPoles.hxx>
Convert a serie of Polynomial N-Dimensional Curves that are have continuity CM to an N-Dimensional Bspline Curve that has continuity CM. (to convert an function (curve) polynomial by span in a BSpline) This class uses the following arguments : NumCurves : the number of Polynomial Curves Continuity: the requested continuity for the n-dimensional Spline Dimension : the dimension of the Spline MaxDegree : maximum allowed degree for each composite polynomial segment. NumCoeffPerCurve : the number of coefficient per segments = degree - 1 Coefficients : the coefficients organized in the following way [1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension] that is : index [n,d,i] is at slot (n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i PolynomialIntervals : nth polynomial represents a polynomial between myPolynomialIntervals->Value(n,0) and myPolynomialIntervals->Value(n,1) TrueIntervals : the nth polynomial has to be mapped linearly to be defined on the following interval : myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1) so that it represent adequatly the function with the required continuity.
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles | ( | const Standard_Integer | NumCurves, |
const Standard_Integer | Continuity, | ||
const Standard_Integer | Dimension, | ||
const Standard_Integer | MaxDegree, | ||
const Handle< TColStd_HArray1OfInteger > & | NumCoeffPerCurve, | ||
const Handle< TColStd_HArray1OfReal > & | Coefficients, | ||
const Handle< TColStd_HArray2OfReal > & | PolynomialIntervals, | ||
const Handle< TColStd_HArray1OfReal > & | TrueIntervals | ||
) |
Warning! Continuity can be at MOST the maximum degree of the polynomial functions TrueIntervals : this is the true parameterisation for the composite curve that is : the curve has myContinuity if the nth curve is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1)
Coefficients have to be the implicit "c form": Coefficients[Numcurves][MaxDegree+1][Dimension]
Warning! The NumberOfCoefficient of an polynome is his degree + 1 Example: To convert the linear function f(x) = 2*x + 1 on the domaine [2,5] to BSpline with the bound [-1,1]. Arguments are : NumCurves = 1; Continuity = 1; Dimension = 1; MaxDegree = 1; NumCoeffPerCurve [1] = {2}; Coefficients[2] = {1, 2}; PolynomialIntervals[1,2] = {{2,5}} TrueIntervals[2] = {-1, 1}
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles | ( | const Standard_Integer | NumCurves, |
const Standard_Integer | Dimension, | ||
const Standard_Integer | MaxDegree, | ||
const TColStd_Array1OfInteger & | Continuity, | ||
const TColStd_Array1OfInteger & | NumCoeffPerCurve, | ||
const TColStd_Array1OfReal & | Coefficients, | ||
const TColStd_Array2OfReal & | PolynomialIntervals, | ||
const TColStd_Array1OfReal & | TrueIntervals | ||
) |
To Convert sevral span with different order of Continuity. Warning: The Length of Continuity have to be NumCurves-1.
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles | ( | const Standard_Integer | Dimension, |
const Standard_Integer | MaxDegree, | ||
const Standard_Integer | Degree, | ||
const TColStd_Array1OfReal & | Coefficients, | ||
const TColStd_Array1OfReal & | PolynomialIntervals, | ||
const TColStd_Array1OfReal & | TrueIntervals | ||
) |
To Convert only one span.
Standard_Integer Convert_CompPolynomialToPoles::Degree | ( | ) | const |
Standard_Boolean Convert_CompPolynomialToPoles::IsDone | ( | ) | const |
void Convert_CompPolynomialToPoles::Knots | ( | Handle< TColStd_HArray1OfReal > & | K | ) | const |
Knots of the n-dimensional Bspline.
void Convert_CompPolynomialToPoles::Multiplicities | ( | Handle< TColStd_HArray1OfInteger > & | M | ) | const |
Multiplicities of the knots in the BSpline.
Standard_Integer Convert_CompPolynomialToPoles::NbKnots | ( | ) | const |
Degree of the n-dimensional Bspline.
Standard_Integer Convert_CompPolynomialToPoles::NbPoles | ( | ) | const |
number of poles of the n-dimensional BSpline
void Convert_CompPolynomialToPoles::Poles | ( | Handle< TColStd_HArray2OfReal > & | Poles | ) | const |
returns the poles of the n-dimensional BSpline in the following format : [1..NumPoles][1..Dimension]