Open CASCADE Technology 7.8.0
Public Member Functions
Convert_SphereToBSplineSurface Class Reference

This algorithm converts a bounded Sphere into a rational B-spline surface. The sphere is a Sphere from package gp. The parametrization of the sphere is P (U, V) = Loc + Radius * Sin(V) * Zdir + Radius * Cos(V) * (Cos(U)*Xdir + Sin(U)*Ydir) where Loc is the center of the sphere Xdir, Ydir and Zdir are the normalized directions of the local cartesian coordinate system of the sphere. The parametrization range is U [0, 2PI] and V [-PI/2, PI/2]. KeyWords : Convert, Sphere, BSplineSurface. More...

#include <Convert_SphereToBSplineSurface.hxx>

Inheritance diagram for Convert_SphereToBSplineSurface:
Inheritance graph
[legend]

Public Member Functions

 Convert_SphereToBSplineSurface (const gp_Sphere &Sph, const Standard_Real U1, const Standard_Real U2, const Standard_Real V1, const Standard_Real V2)
 The equivalent B-spline surface as the same orientation as the sphere in the U and V parametric directions.
 
 Convert_SphereToBSplineSurface (const gp_Sphere &Sph, const Standard_Real Param1, const Standard_Real Param2, const Standard_Boolean UTrim=Standard_True)
 The equivalent B-spline surface as the same orientation as the sphere in the U and V parametric directions.
 
 Convert_SphereToBSplineSurface (const gp_Sphere &Sph)
 The equivalent B-spline surface as the same orientation as the sphere in the U and V parametric directions.
 
- Public Member Functions inherited from Convert_ElementarySurfaceToBSplineSurface
Standard_Integer UDegree () const
 
Standard_Integer VDegree () const
 Returns the degree for the u or v parametric direction of the BSpline surface whose data is computed in this framework.
 
Standard_Integer NbUPoles () const
 
Standard_Integer NbVPoles () const
 Returns the number of poles for the u or v parametric direction of the BSpline surface whose data is computed in this framework.
 
Standard_Integer NbUKnots () const
 
Standard_Integer NbVKnots () const
 Returns the number of knots for the u or v parametric direction of the BSpline surface whose data is computed in this framework .
 
Standard_Boolean IsUPeriodic () const
 
Standard_Boolean IsVPeriodic () const
 Returns true if the BSpline surface whose data is computed in this framework is periodic in the u or v parametric direction.
 
gp_Pnt Pole (const Standard_Integer UIndex, const Standard_Integer VIndex) const
 Returns the pole of index (UIndex,VIndex) to the poles table of the BSpline surface whose data is computed in this framework. Exceptions Standard_OutOfRange if, for the BSpline surface whose data is computed in this framework:
 
Standard_Real Weight (const Standard_Integer UIndex, const Standard_Integer VIndex) const
 Returns the weight of the pole of index (UIndex,VIndex) to the poles table of the BSpline surface whose data is computed in this framework. Exceptions Standard_OutOfRange if, for the BSpline surface whose data is computed in this framework:
 
Standard_Real UKnot (const Standard_Integer UIndex) const
 Returns the U-knot of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots.
 
Standard_Real VKnot (const Standard_Integer UIndex) const
 Returns the V-knot of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots.
 
Standard_Integer UMultiplicity (const Standard_Integer UIndex) const
 Returns the multiplicity of the U-knot of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots.
 
Standard_Integer VMultiplicity (const Standard_Integer VIndex) const
 Returns the multiplicity of the V-knot of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots.
 

Additional Inherited Members

- Protected Member Functions inherited from Convert_ElementarySurfaceToBSplineSurface
 Convert_ElementarySurfaceToBSplineSurface (const Standard_Integer NumberOfUPoles, const Standard_Integer NumberOfVPoles, const Standard_Integer NumberOfUKnots, const Standard_Integer NumberOfVKnots, const Standard_Integer UDegree, const Standard_Integer VDegree)
 
- Protected Attributes inherited from Convert_ElementarySurfaceToBSplineSurface
TColgp_Array2OfPnt poles
 
TColStd_Array2OfReal weights
 
TColStd_Array1OfReal uknots
 
TColStd_Array1OfInteger umults
 
TColStd_Array1OfReal vknots
 
TColStd_Array1OfInteger vmults
 
Standard_Integer udegree
 
Standard_Integer vdegree
 
Standard_Integer nbUPoles
 
Standard_Integer nbVPoles
 
Standard_Integer nbUKnots
 
Standard_Integer nbVKnots
 
Standard_Boolean isuperiodic
 
Standard_Boolean isvperiodic
 

Detailed Description

This algorithm converts a bounded Sphere into a rational B-spline surface. The sphere is a Sphere from package gp. The parametrization of the sphere is P (U, V) = Loc + Radius * Sin(V) * Zdir + Radius * Cos(V) * (Cos(U)*Xdir + Sin(U)*Ydir) where Loc is the center of the sphere Xdir, Ydir and Zdir are the normalized directions of the local cartesian coordinate system of the sphere. The parametrization range is U [0, 2PI] and V [-PI/2, PI/2]. KeyWords : Convert, Sphere, BSplineSurface.

Constructor & Destructor Documentation

◆ Convert_SphereToBSplineSurface() [1/3]

Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface ( const gp_Sphere Sph,
const Standard_Real  U1,
const Standard_Real  U2,
const Standard_Real  V1,
const Standard_Real  V2 
)

The equivalent B-spline surface as the same orientation as the sphere in the U and V parametric directions.

Raised if U1 = U2 or U1 = U2 + 2.0 * Pi Raised if V1 = V2.

◆ Convert_SphereToBSplineSurface() [2/3]

Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface ( const gp_Sphere Sph,
const Standard_Real  Param1,
const Standard_Real  Param2,
const Standard_Boolean  UTrim = Standard_True 
)

The equivalent B-spline surface as the same orientation as the sphere in the U and V parametric directions.

Raised if UTrim = True and Param1 = Param2 or Param1 = Param2 + 2.0 * Pi Raised if UTrim = False and Param1 = Param2

◆ Convert_SphereToBSplineSurface() [3/3]

Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface ( const gp_Sphere Sph)

The equivalent B-spline surface as the same orientation as the sphere in the U and V parametric directions.


The documentation for this class was generated from the following file: