Open CASCADE Technology 7.8.0
|
#include <Extrema_EPCOfExtPC.hxx>
Public Member Functions | |
Extrema_EPCOfExtPC () | |
Extrema_EPCOfExtPC (const gp_Pnt &P, const Adaptor3d_Curve &C, const Standard_Integer NbU, const Standard_Real TolU, const Standard_Real TolF) | |
It calculates all the distances. The function F(u)=distance(P,C(u)) has an extremum when g(u)=dF/du=0. The algorithm searches all the zeros inside the definition range of the curve. NbU is used to locate the close points to find the zeros. Tol and TolU are used to decide to stop the iterations according to the following condition: if n is the number of iterations, abs(Un-Un-1) < TolU and abs(F(Un)-F(Un-1)) < Tol. | |
Extrema_EPCOfExtPC (const gp_Pnt &P, const Adaptor3d_Curve &C, const Standard_Integer NbU, const Standard_Real Umin, const Standard_Real Usup, const Standard_Real TolU, const Standard_Real TolF) | |
It calculates all the distances. The function F(u)=distance(P,C(u)) has an extremum when g(u)=dF/du=0. The algorithm searches all the zeros inside the definition range of the curve. NbU is used to locate the close points to find the zeros. Zeros are searched between umin and usup. Tol and TolU are used to decide to stop the iterations according to the following condition: if n is the number of iterations, abs(Un-Un-1) < TolU and abs(F(Un)-F(Un-1)) < Tol. | |
void | Initialize (const Adaptor3d_Curve &C, const Standard_Integer NbU, const Standard_Real TolU, const Standard_Real TolF) |
sets the fields of the algorithm. | |
void | Initialize (const Adaptor3d_Curve &C, const Standard_Integer NbU, const Standard_Real Umin, const Standard_Real Usup, const Standard_Real TolU, const Standard_Real TolF) |
sets the fields of the algorithm. | |
void | Initialize (const Adaptor3d_Curve &C) |
sets the fields of the algorithm. | |
void | Initialize (const Standard_Integer NbU, const Standard_Real Umin, const Standard_Real Usup, const Standard_Real TolU, const Standard_Real TolF) |
sets the fields of the algorithm. | |
void | Perform (const gp_Pnt &P) |
the algorithm is done with the point P. An exception is raised if the fields have not been initialized. | |
Standard_Boolean | IsDone () const |
True if the distances are found. | |
Standard_Integer | NbExt () const |
Returns the number of extremum distances. | |
Standard_Real | SquareDistance (const Standard_Integer N) const |
Returns the value of the Nth extremum square distance. | |
Standard_Boolean | IsMin (const Standard_Integer N) const |
Returns True if the Nth extremum distance is a minimum. | |
const Extrema_POnCurv & | Point (const Standard_Integer N) const |
Returns the point of the Nth extremum distance. | |
Extrema_EPCOfExtPC::Extrema_EPCOfExtPC | ( | ) |
Extrema_EPCOfExtPC::Extrema_EPCOfExtPC | ( | const gp_Pnt & | P, |
const Adaptor3d_Curve & | C, | ||
const Standard_Integer | NbU, | ||
const Standard_Real | TolU, | ||
const Standard_Real | TolF | ||
) |
It calculates all the distances. The function F(u)=distance(P,C(u)) has an extremum when g(u)=dF/du=0. The algorithm searches all the zeros inside the definition range of the curve. NbU is used to locate the close points to find the zeros. Tol and TolU are used to decide to stop the iterations according to the following condition: if n is the number of iterations, abs(Un-Un-1) < TolU and abs(F(Un)-F(Un-1)) < Tol.
Extrema_EPCOfExtPC::Extrema_EPCOfExtPC | ( | const gp_Pnt & | P, |
const Adaptor3d_Curve & | C, | ||
const Standard_Integer | NbU, | ||
const Standard_Real | Umin, | ||
const Standard_Real | Usup, | ||
const Standard_Real | TolU, | ||
const Standard_Real | TolF | ||
) |
It calculates all the distances. The function F(u)=distance(P,C(u)) has an extremum when g(u)=dF/du=0. The algorithm searches all the zeros inside the definition range of the curve. NbU is used to locate the close points to find the zeros. Zeros are searched between umin and usup. Tol and TolU are used to decide to stop the iterations according to the following condition: if n is the number of iterations, abs(Un-Un-1) < TolU and abs(F(Un)-F(Un-1)) < Tol.
void Extrema_EPCOfExtPC::Initialize | ( | const Adaptor3d_Curve & | C | ) |
sets the fields of the algorithm.
void Extrema_EPCOfExtPC::Initialize | ( | const Adaptor3d_Curve & | C, |
const Standard_Integer | NbU, | ||
const Standard_Real | TolU, | ||
const Standard_Real | TolF | ||
) |
sets the fields of the algorithm.
void Extrema_EPCOfExtPC::Initialize | ( | const Adaptor3d_Curve & | C, |
const Standard_Integer | NbU, | ||
const Standard_Real | Umin, | ||
const Standard_Real | Usup, | ||
const Standard_Real | TolU, | ||
const Standard_Real | TolF | ||
) |
sets the fields of the algorithm.
void Extrema_EPCOfExtPC::Initialize | ( | const Standard_Integer | NbU, |
const Standard_Real | Umin, | ||
const Standard_Real | Usup, | ||
const Standard_Real | TolU, | ||
const Standard_Real | TolF | ||
) |
sets the fields of the algorithm.
Standard_Boolean Extrema_EPCOfExtPC::IsDone | ( | ) | const |
True if the distances are found.
Standard_Boolean Extrema_EPCOfExtPC::IsMin | ( | const Standard_Integer | N | ) | const |
Returns True if the Nth extremum distance is a minimum.
Standard_Integer Extrema_EPCOfExtPC::NbExt | ( | ) | const |
Returns the number of extremum distances.
the algorithm is done with the point P. An exception is raised if the fields have not been initialized.
const Extrema_POnCurv & Extrema_EPCOfExtPC::Point | ( | const Standard_Integer | N | ) | const |
Returns the point of the Nth extremum distance.
Standard_Real Extrema_EPCOfExtPC::SquareDistance | ( | const Standard_Integer | N | ) | const |
Returns the value of the Nth extremum square distance.