This class defines a complete surface of revolution. The surface is obtained by rotating a curve a complete revolution about an axis. The curve and the axis must be in the same plane. If the curve and the axis are not in the same plane it is always possible to be in the previous case after a cylindrical projection of the curve in a referenced plane. For a complete surface of revolution the parametric range is 0 <= U <= 2*PI. – The parametric range for V is defined with the revolved curve. The origin of the U parametrization is given by the position of the revolved curve (reference). The direction of the revolution axis defines the positive sense of rotation (trigonometric sense) corresponding to the increasing of the parametric value U. The derivatives are always defined for the u direction. For the v direction the definition of the derivatives depends on the degree of continuity of the referenced curve.
More...
|
| GeomAdaptor_SurfaceOfRevolution () |
|
| GeomAdaptor_SurfaceOfRevolution (const Handle< Adaptor3d_Curve > &C) |
| The Curve is loaded.
|
|
| GeomAdaptor_SurfaceOfRevolution (const Handle< Adaptor3d_Curve > &C, const gp_Ax1 &V) |
| The Curve and the Direction are loaded.
|
|
virtual Handle< Adaptor3d_Surface > | ShallowCopy () const override |
| Shallow copy of adaptor.
|
|
void | Load (const Handle< Adaptor3d_Curve > &C) |
| Changes the Curve.
|
|
void | Load (const gp_Ax1 &V) |
| Changes the Direction.
|
|
gp_Ax1 | AxeOfRevolution () const override |
|
Standard_Real | FirstUParameter () const override |
|
Standard_Real | LastUParameter () const override |
|
Standard_Real | FirstVParameter () const override |
|
Standard_Real | LastVParameter () const override |
|
GeomAbs_Shape | UContinuity () const override |
|
GeomAbs_Shape | VContinuity () const override |
| Return CN.
|
|
Standard_Integer | NbUIntervals (const GeomAbs_Shape S) const override |
| Returns the number of U intervals for continuity . May be one if UContinuity(me) >=
|
|
Standard_Integer | NbVIntervals (const GeomAbs_Shape S) const override |
| Returns the number of V intervals for continuity . May be one if VContinuity(me) >=
|
|
void | UIntervals (TColStd_Array1OfReal &T, const GeomAbs_Shape S) const override |
| Returns the intervals with the requested continuity in the U direction.
|
|
void | VIntervals (TColStd_Array1OfReal &T, const GeomAbs_Shape S) const override |
| Returns the intervals with the requested continuity in the V direction.
|
|
Handle< Adaptor3d_Surface > | UTrim (const Standard_Real First, const Standard_Real Last, const Standard_Real Tol) const override |
| Returns a surface trimmed in the U direction equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. If <First> >= <Last>
|
|
Handle< Adaptor3d_Surface > | VTrim (const Standard_Real First, const Standard_Real Last, const Standard_Real Tol) const override |
| Returns a surface trimmed in the V direction between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. If <First> >= <Last>
|
|
Standard_Boolean | IsUClosed () const override |
|
Standard_Boolean | IsVClosed () const override |
|
Standard_Boolean | IsUPeriodic () const override |
|
Standard_Real | UPeriod () const override |
|
Standard_Boolean | IsVPeriodic () const override |
|
Standard_Real | VPeriod () const override |
|
Standard_Real | UResolution (const Standard_Real R3d) const override |
| Returns the parametric U resolution corresponding to the real space resolution <R3d>.
|
|
Standard_Real | VResolution (const Standard_Real R3d) const override |
| Returns the parametric V resolution corresponding to the real space resolution <R3d>.
|
|
GeomAbs_SurfaceType | GetType () const override |
| Returns the type of the surface : Plane, Cylinder, Cone, Sphere, Torus, BezierSurface, BSplineSurface, SurfaceOfRevolution, SurfaceOfExtrusion, OtherSurface.
|
|
gp_Pln | Plane () const override |
|
gp_Cylinder | Cylinder () const override |
|
gp_Cone | Cone () const override |
| Apex of the Cone = Cone.Position().Location() ==> ReferenceRadius = 0.
|
|
gp_Sphere | Sphere () const override |
|
gp_Torus | Torus () const override |
|
Standard_Integer | VDegree () const override |
|
Standard_Integer | NbVPoles () const override |
|
Standard_Integer | NbVKnots () const override |
|
Standard_Boolean | IsURational () const override |
|
Standard_Boolean | IsVRational () const override |
|
Handle< Geom_BezierSurface > | Bezier () const override |
| This will NOT make a copy of the Bezier Surface : If you want to modify the Surface please make a copy yourself Also it will NOT trim the surface to myU/VFirst/Last.
|
|
Handle< Geom_BSplineSurface > | BSpline () const override |
| This will NOT make a copy of the BSpline Surface : If you want to modify the Surface please make a copy yourself Also it will NOT trim the surface to myU/VFirst/Last.
|
|
const gp_Ax3 & | Axis () const |
|
Handle< Adaptor3d_Curve > | BasisCurve () const override |
|
| GeomAdaptor_Surface () |
|
| GeomAdaptor_Surface (const Handle< Geom_Surface > &theSurf) |
|
| GeomAdaptor_Surface (const Handle< Geom_Surface > &theSurf, const Standard_Real theUFirst, const Standard_Real theULast, const Standard_Real theVFirst, const Standard_Real theVLast, const Standard_Real theTolU=0.0, const Standard_Real theTolV=0.0) |
| Standard_ConstructionError is raised if UFirst>ULast or VFirst>VLast.
|
|
void | Load (const Handle< Geom_Surface > &theSurf) |
|
void | Load (const Handle< Geom_Surface > &theSurf, const Standard_Real theUFirst, const Standard_Real theULast, const Standard_Real theVFirst, const Standard_Real theVLast, const Standard_Real theTolU=0.0, const Standard_Real theTolV=0.0) |
| Standard_ConstructionError is raised if theUFirst>theULast or theVFirst>theVLast.
|
|
const Handle< Geom_Surface > & | Surface () const |
|
gp_Pnt | Value (const Standard_Real U, const Standard_Real V) const override |
| Computes the point of parameters U,V on the surface.
|
|
void | D0 (const Standard_Real U, const Standard_Real V, gp_Pnt &P) const override |
| Computes the point of parameters U,V on the surface.
|
|
void | D1 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V) const override |
| Computes the point and the first derivatives on the surface.
|
|
void | D2 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV) const override |
| Computes the point, the first and second derivatives on the surface.
|
|
void | D3 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV, gp_Vec &D3U, gp_Vec &D3V, gp_Vec &D3UUV, gp_Vec &D3UVV) const override |
| Computes the point, the first, second and third derivatives on the surface.
|
|
gp_Vec | DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const override |
| Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
|
|
Standard_Integer | UDegree () const override |
|
Standard_Integer | NbUPoles () const override |
|
Standard_Integer | NbUKnots () const override |
|
gp_Dir | Direction () const override |
|
Handle< Adaptor3d_Surface > | BasisSurface () const override |
|
Standard_Real | OffsetValue () const override |
|
virtual | ~Adaptor3d_Surface () |
|
Public Member Functions inherited from Standard_Transient |
| Standard_Transient () |
| Empty constructor.
|
|
| Standard_Transient (const Standard_Transient &) |
| Copy constructor – does nothing.
|
|
Standard_Transient & | operator= (const Standard_Transient &) |
| Assignment operator, needed to avoid copying reference counter.
|
|
virtual | ~Standard_Transient () |
| Destructor must be virtual.
|
|
virtual const opencascade::handle< Standard_Type > & | DynamicType () const |
| Returns a type descriptor about this object.
|
|
Standard_Boolean | IsInstance (const opencascade::handle< Standard_Type > &theType) const |
| Returns a true value if this is an instance of Type.
|
|
Standard_Boolean | IsInstance (const Standard_CString theTypeName) const |
| Returns a true value if this is an instance of TypeName.
|
|
Standard_Boolean | IsKind (const opencascade::handle< Standard_Type > &theType) const |
| Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
|
|
Standard_Boolean | IsKind (const Standard_CString theTypeName) const |
| Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
|
|
Standard_Transient * | This () const |
| Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
|
|
Standard_Integer | GetRefCount () const noexcept |
| Get the reference counter of this object.
|
|
void | IncrementRefCounter () noexcept |
| Increments the reference counter of this object.
|
|
Standard_Integer | DecrementRefCounter () noexcept |
| Decrements the reference counter of this object; returns the decremented value.
|
|
virtual void | Delete () const |
| Memory deallocator for transient classes.
|
|
This class defines a complete surface of revolution. The surface is obtained by rotating a curve a complete revolution about an axis. The curve and the axis must be in the same plane. If the curve and the axis are not in the same plane it is always possible to be in the previous case after a cylindrical projection of the curve in a referenced plane. For a complete surface of revolution the parametric range is 0 <= U <= 2*PI. – The parametric range for V is defined with the revolved curve. The origin of the U parametrization is given by the position of the revolved curve (reference). The direction of the revolution axis defines the positive sense of rotation (trigonometric sense) corresponding to the increasing of the parametric value U. The derivatives are always defined for the u direction. For the v direction the definition of the derivatives depends on the degree of continuity of the referenced curve.