|  | 
|  | Law_BSpFunc () | 
|  | 
|  | Law_BSpFunc (const Handle< Law_BSpline > &C, const Standard_Real First, const Standard_Real Last) | 
|  | 
| GeomAbs_Shape | Continuity () const override | 
|  | 
| Standard_Integer | NbIntervals (const GeomAbs_Shape S) const override | 
|  | Returns the number of intervals for continuity . May be one if Continuity(me) >=  
 | 
|  | 
| void | Intervals (TColStd_Array1OfReal &T, const GeomAbs_Shape S) const override | 
|  | Stores in <T> the parameters bounding the intervals of continuity . The array must provide enough room to accommodate for the parameters, i.e. T.Length() > NbIntervals() 
 | 
|  | 
| Standard_Real | Value (const Standard_Real X) override | 
|  | Returns the value of the function at the point of parameter X. 
 | 
|  | 
| void | D1 (const Standard_Real X, Standard_Real &F, Standard_Real &D) override | 
|  | Returns the value F and the first derivative D of the function at the point of parameter X. 
 | 
|  | 
| void | D2 (const Standard_Real X, Standard_Real &F, Standard_Real &D, Standard_Real &D2) override | 
|  | Returns the value, first and seconde derivatives at parameter X. 
 | 
|  | 
| Handle< Law_Function > | Trim (const Standard_Real PFirst, const Standard_Real PLast, const Standard_Real Tol) const override | 
|  | Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn. 
 | 
|  | 
| void | Bounds (Standard_Real &PFirst, Standard_Real &PLast) override | 
|  | Returns the parametric bounds of the function. 
 | 
|  | 
| Handle< Law_BSpline > | Curve () const | 
|  | 
| void | SetCurve (const Handle< Law_BSpline > &C) | 
|  | 
|  Public Member Functions inherited from Standard_Transient | 
|  | Standard_Transient () | 
|  | Empty constructor. 
 | 
|  | 
|  | Standard_Transient (const Standard_Transient &) | 
|  | Copy constructor – does nothing. 
 | 
|  | 
| Standard_Transient & | operator= (const Standard_Transient &) | 
|  | Assignment operator, needed to avoid copying reference counter. 
 | 
|  | 
| virtual | ~Standard_Transient () | 
|  | Destructor must be virtual. 
 | 
|  | 
| virtual const opencascade::handle< Standard_Type > & | DynamicType () const | 
|  | Returns a type descriptor about this object. 
 | 
|  | 
| Standard_Boolean | IsInstance (const opencascade::handle< Standard_Type > &theType) const | 
|  | Returns a true value if this is an instance of Type. 
 | 
|  | 
| Standard_Boolean | IsInstance (const Standard_CString theTypeName) const | 
|  | Returns a true value if this is an instance of TypeName. 
 | 
|  | 
| Standard_Boolean | IsKind (const opencascade::handle< Standard_Type > &theType) const | 
|  | Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism. 
 | 
|  | 
| Standard_Boolean | IsKind (const Standard_CString theTypeName) const | 
|  | Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism. 
 | 
|  | 
| Standard_Transient * | This () const | 
|  | Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero. 
 | 
|  | 
| Standard_Integer | GetRefCount () const noexcept | 
|  | Get the reference counter of this object. 
 | 
|  | 
| void | IncrementRefCounter () noexcept | 
|  | Increments the reference counter of this object. 
 | 
|  | 
| Standard_Integer | DecrementRefCounter () noexcept | 
|  | Decrements the reference counter of this object; returns the decremented value. 
 | 
|  | 
| virtual void | Delete () const | 
|  | Memory deallocator for transient classes. 
 | 
|  | 
Law Function based on a BSpline curve 1d. Package methods and classes are implemented in package Law to construct the basis curve with several constraints.