This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.
Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
More...
|
| | math_GlobOptMin (math_MultipleVarFunction *theFunc, const math_Vector &theLowerBorder, const math_Vector &theUpperBorder, const Standard_Real theC=9, const Standard_Real theDiscretizationTol=1.0e-2, const Standard_Real theSameTol=1.0e-7) |
| |
| void | SetGlobalParams (math_MultipleVarFunction *theFunc, const math_Vector &theLowerBorder, const math_Vector &theUpperBorder, const Standard_Real theC=9, const Standard_Real theDiscretizationTol=1.0e-2, const Standard_Real theSameTol=1.0e-7) |
| |
| void | SetLocalParams (const math_Vector &theLocalA, const math_Vector &theLocalB) |
| |
| void | SetTol (const Standard_Real theDiscretizationTol, const Standard_Real theSameTol) |
| |
| void | GetTol (Standard_Real &theDiscretizationTol, Standard_Real &theSameTol) |
| |
| | ~math_GlobOptMin () |
| |
| void | Perform () |
| |
| Standard_Real | GetF () |
| | Get best functional value. More...
|
| |
| Standard_Integer | NbExtrema () |
| | Return count of global extremas. More...
|
| |
| void | Points (const Standard_Integer theIndex, math_Vector &theSol) |
| | Return solution theIndex, 1 <= theIndex <= NbExtrema. More...
|
| |
| Standard_Boolean | isDone () |
| |
This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.
Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.