# Geom_Plane Class Reference

Describes a plane in 3D space. A plane is positioned in space by a coordinate system (a gp_Ax3 object) such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system. This coordinate system is the "local coordinate system" of the plane. The following apply: More...

`#include <Geom_Plane.hxx>`

Inheritance diagram for Geom_Plane:
[legend]

## Public Member Functions

Geom_Plane (const gp_Ax3 &A3)
Creates a plane located in 3D space with an axis placement three axis. The "ZDirection" of "A3" is the direction normal to the plane. The "Location" point of "A3" is the origin of the plane. The "XDirection" and "YDirection" of "A3" define the directions of the U isoparametric and V isoparametric curves. More...

Geom_Plane (const gp_Pln &Pl)
Creates a plane from a non transient plane from package gp. More...

Geom_Plane (const gp_Pnt &P, const gp_Dir &V)
P is the "Location" point or origin of the plane. V is the direction normal to the plane. More...

Geom_Plane (const Standard_Real A, const Standard_Real B, const Standard_Real C, const Standard_Real D)
Creates a plane from its cartesian equation : Ax + By + Cz + D = 0.0. More...

void SetPln (const gp_Pln &Pl)
Set <me> so that <me> has the same geometric properties as Pl. More...

gp_Pln Pln () const
Converts this plane into a gp_Pln plane. More...

virtual void UReverse ()
Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. More...

Standard_Real UReversedParameter (const Standard_Real U) const
Computes the u parameter on the modified plane, produced when reversing the u parametric of this plane, for any point of u parameter U on this plane. In the case of a plane, these methods return - -U. More...

virtual void VReverse ()
Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. More...

Standard_Real VReversedParameter (const Standard_Real V) const
Computes the v parameter on the modified plane, produced when reversing the v parametric of this plane, for any point of v parameter V on this plane. In the case of a plane, these methods return -V. More...

virtual void TransformParameters (Standard_Real &U, Standard_Real &V, const gp_Trsf &T) const
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. me->Transformed(T)->Value(U',V') is the same point as me->Value(U,V).Transformed(T) Where U',V' are the new values of U,V after calling me->TranformParameters(U,V,T) This methods multiplies U and V by T.ScaleFactor() More...

virtual gp_GTrsf2d ParametricTransformation (const gp_Trsf &T) const
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. me->Transformed(T)->Value(U',V') is the same point as me->Value(U,V).Transformed(T) Where U',V' are obtained by transforming U,V with th 2d transformation returned by me->ParametricTransformation(T) This methods returns a scale centered on the origin with T.ScaleFactor. More...

void Bounds (Standard_Real &U1, Standard_Real &U2, Standard_Real &V1, Standard_Real &V2) const
Returns the parametric bounds U1, U2, V1 and V2 of this plane. Because a plane is an infinite surface, the following is always true: More...

void Coefficients (Standard_Real &A, Standard_Real &B, Standard_Real &C, Standard_Real &D) const
Computes the normalized coefficients of the plane's cartesian equation : Ax + By + Cz + D = 0.0. More...

Standard_Boolean IsUClosed () const
return False More...

Standard_Boolean IsVClosed () const
return False More...

Standard_Boolean IsUPeriodic () const
return False. More...

Standard_Boolean IsVPeriodic () const
return False. More...

Handle< Geom_CurveUIso (const Standard_Real U) const
Computes the U isoparametric curve. This is a Line parallel to the YAxis of the plane. More...

Handle< Geom_CurveVIso (const Standard_Real V) const
Computes the V isoparametric curve. This is a Line parallel to the XAxis of the plane. More...

void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt &P) const
Computes the point P (U, V) on <me>. P = O + U * XDir + V * YDir. where O is the "Location" point of the plane, XDir the "XDirection" and YDir the "YDirection" of the plane's local coordinate system. More...

void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V) const
Computes the current point and the first derivatives in the directions U and V. More...

void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV) const
Computes the current point, the first and the second derivatives in the directions U and V. More...

void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV, gp_Vec &D3U, gp_Vec &D3V, gp_Vec &D3UUV, gp_Vec &D3UVV) const
Computes the current point, the first,the second and the third derivatives in the directions U and V. More...

gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const
Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. More...

void Transform (const gp_Trsf &T)
Applies the transformation T to this plane. More...

Handle< Geom_GeometryCopy () const
Creates a new object which is a copy of this plane. More...

Public Member Functions inherited from Geom_ElementarySurface
void SetAxis (const gp_Ax1 &A1)
Changes the main axis (ZAxis) of the elementary surface. More...

void SetLocation (const gp_Pnt &Loc)
Changes the location of the local coordinates system of the surface. More...

void SetPosition (const gp_Ax3 &A3)
Changes the local coordinates system of the surface. More...

gp_Ax1 Axis () const
Returns the main axis of the surface (ZAxis). More...

gp_Pnt Location () const
Returns the location point of the local coordinate system of the surface. More...

const gp_Ax3Position () const
Returns the local coordinates system of the surface. More...

GeomAbs_Shape Continuity () const
Returns GeomAbs_CN, the global continuity of any elementary surface. More...

Standard_Boolean IsCNu (const Standard_Integer N) const
Returns True. More...

Standard_Boolean IsCNv (const Standard_Integer N) const
Returns True. More...

Public Member Functions inherited from Geom_Surface
Handle< Geom_SurfaceUReversed () const
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned. More...

Handle< Geom_SurfaceVReversed () const
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned. More...

virtual Standard_Real UPeriod () const
Returns the period of this surface in the u parametric direction. raises if the surface is not uperiodic. More...

virtual Standard_Real VPeriod () const
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic. More...

gp_Pnt Value (const Standard_Real U, const Standard_Real V) const
Computes the point of parameter U on the surface. More...

Public Member Functions inherited from Geom_Geometry
void Mirror (const gp_Pnt &P)
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry. More...

void Mirror (const gp_Ax1 &A1)
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry. More...

void Mirror (const gp_Ax2 &A2)
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection). More...

void Rotate (const gp_Ax1 &A1, const Standard_Real Ang)
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians. More...

void Scale (const gp_Pnt &P, const Standard_Real S)
Scales a Geometry. S is the scaling value. More...

void Translate (const gp_Vec &V)
Translates a Geometry. V is the vector of the tanslation. More...

void Translate (const gp_Pnt &P1, const gp_Pnt &P2)
Translates a Geometry from the point P1 to the point P2. More...

Handle< Geom_GeometryMirrored (const gp_Pnt &P) const

Handle< Geom_GeometryMirrored (const gp_Ax1 &A1) const

Handle< Geom_GeometryMirrored (const gp_Ax2 &A2) const

Handle< Geom_GeometryRotated (const gp_Ax1 &A1, const Standard_Real Ang) const

Handle< Geom_GeometryScaled (const gp_Pnt &P, const Standard_Real S) const

Handle< Geom_GeometryTransformed (const gp_Trsf &T) const

Handle< Geom_GeometryTranslated (const gp_Vec &V) const

Handle< Geom_GeometryTranslated (const gp_Pnt &P1, const gp_Pnt &P2) const

Public Member Functions inherited from MMgt_TShared
virtual void Delete () const
Memory deallocator for transient classes. More...

Public Member Functions inherited from Standard_Transient
Standard_Transient ()
Empty constructor. More...

Standard_Transient (const Standard_Transient &)
Copy constructor – does nothing. More...

Standard_Transientoperator= (const Standard_Transient &)
Assignment operator, needed to avoid copying reference counter. More...

virtual ~Standard_Transient ()
Destructor must be virtual. More...

virtual const
Handle_Standard_Type &
DynamicType () const

Standard_Boolean IsInstance (const Handle_Standard_Type &theType) const
Returns a true value if this is an instance of Type. More...

Standard_Boolean IsInstance (const Standard_CString theTypeName) const
Returns a true value if this is an instance of TypeName. More...

Standard_Boolean IsKind (const Handle_Standard_Type &theType) const
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism. More...

Standard_Boolean IsKind (const Standard_CString theTypeName) const
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism. More...

virtual Handle_Standard_Transient This () const
Returns a Handle which references this object. Must never be called to objects created in stack. More...

Standard_Integer GetRefCount () const
Get the reference counter of this object. More...

Protected Attributes inherited from Geom_ElementarySurface
gp_Ax3 pos

## Detailed Description

Describes a plane in 3D space. A plane is positioned in space by a coordinate system (a gp_Ax3 object) such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system. This coordinate system is the "local coordinate system" of the plane. The following apply:

• Its "X Direction" and "Y Direction" are respectively the u and v parametric directions of the plane.
• Its origin is the origin of the u and v parameters (also called the "origin" of the plane).
• Its "main Direction" is a vector normal to the plane. This normal vector gives the orientation of the plane only if the local coordinate system is "direct". (The orientation of the plane is always defined by the "X Direction" and the "Y Direction" of its local coordinate system.) The parametric equation of the plane is: P(u, v) = O + u*XDir + v*YDir where O, XDir and YDir are respectively the origin, the "X Direction" and the "Y Direction" of the local coordinate system of the plane. The parametric range of the two parameters u and v is ] -infinity, +infinity [.

## Constructor & Destructor Documentation

 Geom_Plane::Geom_Plane ( const gp_Ax3 & A3 )

Creates a plane located in 3D space with an axis placement three axis. The "ZDirection" of "A3" is the direction normal to the plane. The "Location" point of "A3" is the origin of the plane. The "XDirection" and "YDirection" of "A3" define the directions of the U isoparametric and V isoparametric curves.

 Geom_Plane::Geom_Plane ( const gp_Pln & Pl )

Creates a plane from a non transient plane from package gp.

 Geom_Plane::Geom_Plane ( const gp_Pnt & P, const gp_Dir & V )

P is the "Location" point or origin of the plane. V is the direction normal to the plane.

 Geom_Plane::Geom_Plane ( const Standard_Real A, const Standard_Real B, const Standard_Real C, const Standard_Real D )

Creates a plane from its cartesian equation : Ax + By + Cz + D = 0.0.

Raised if Sqrt (A*A + B*B + C*C) <= Resolution from gp

## Member Function Documentation

 void Geom_Plane::Bounds ( Standard_Real & U1, Standard_Real & U2, Standard_Real & V1, Standard_Real & V2 ) const
virtual

Returns the parametric bounds U1, U2, V1 and V2 of this plane. Because a plane is an infinite surface, the following is always true:

• U1 = V1 = Standard_Real::RealFirst()
• U2 = V2 = Standard_Real::RealLast().

Implements Geom_Surface.

 void Geom_Plane::Coefficients ( Standard_Real & A, Standard_Real & B, Standard_Real & C, Standard_Real & D ) const

Computes the normalized coefficients of the plane's cartesian equation : Ax + By + Cz + D = 0.0.

 Handle< Geom_Geometry > Geom_Plane::Copy ( ) const
virtual

Creates a new object which is a copy of this plane.

Implements Geom_Geometry.

 void Geom_Plane::D0 ( const Standard_Real U, const Standard_Real V, gp_Pnt & P ) const
virtual

Computes the point P (U, V) on <me>. P = O + U * XDir + V * YDir. where O is the "Location" point of the plane, XDir the "XDirection" and YDir the "YDirection" of the plane's local coordinate system.

Implements Geom_Surface.

 void Geom_Plane::D1 ( const Standard_Real U, const Standard_Real V, gp_Pnt & P, gp_Vec & D1U, gp_Vec & D1V ) const
virtual

Computes the current point and the first derivatives in the directions U and V.

Implements Geom_Surface.

 void Geom_Plane::D2 ( const Standard_Real U, const Standard_Real V, gp_Pnt & P, gp_Vec & D1U, gp_Vec & D1V, gp_Vec & D2U, gp_Vec & D2V, gp_Vec & D2UV ) const
virtual

Computes the current point, the first and the second derivatives in the directions U and V.

Implements Geom_Surface.

 void Geom_Plane::D3 ( const Standard_Real U, const Standard_Real V, gp_Pnt & P, gp_Vec & D1U, gp_Vec & D1V, gp_Vec & D2U, gp_Vec & D2V, gp_Vec & D2UV, gp_Vec & D3U, gp_Vec & D3V, gp_Vec & D3UUV, gp_Vec & D3UVV ) const
virtual

Computes the current point, the first,the second and the third derivatives in the directions U and V.

Implements Geom_Surface.

 gp_Vec Geom_Plane::DN ( const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv ) const
virtual

Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.

Implements Geom_Surface.

 Standard_Boolean Geom_Plane::IsUClosed ( ) const
virtual

return False

Implements Geom_Surface.

 Standard_Boolean Geom_Plane::IsUPeriodic ( ) const
virtual

return False.

Implements Geom_Surface.

 Standard_Boolean Geom_Plane::IsVClosed ( ) const
virtual

return False

Implements Geom_Surface.

 Standard_Boolean Geom_Plane::IsVPeriodic ( ) const
virtual

return False.

Implements Geom_Surface.

 virtual gp_GTrsf2d Geom_Plane::ParametricTransformation ( const gp_Trsf & T ) const
virtual

Returns a 2d transformation used to find the new parameters of a point on the transformed surface. me->Transformed(T)->Value(U',V') is the same point as me->Value(U,V).Transformed(T) Where U',V' are obtained by transforming U,V with th 2d transformation returned by me->ParametricTransformation(T) This methods returns a scale centered on the origin with T.ScaleFactor.

Reimplemented from Geom_Surface.

 gp_Pln Geom_Plane::Pln ( ) const

Converts this plane into a gp_Pln plane.

 void Geom_Plane::SetPln ( const gp_Pln & Pl )

Set <me> so that <me> has the same geometric properties as Pl.

 void Geom_Plane::Transform ( const gp_Trsf & T )
virtual

Applies the transformation T to this plane.

Implements Geom_Geometry.

 virtual void Geom_Plane::TransformParameters ( Standard_Real & U, Standard_Real & V, const gp_Trsf & T ) const
virtual

Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. me->Transformed(T)->Value(U',V') is the same point as me->Value(U,V).Transformed(T) Where U',V' are the new values of U,V after calling me->TranformParameters(U,V,T) This methods multiplies U and V by T.ScaleFactor()

Reimplemented from Geom_Surface.

 Handle< Geom_Curve > Geom_Plane::UIso ( const Standard_Real U ) const
virtual

Computes the U isoparametric curve. This is a Line parallel to the YAxis of the plane.

Implements Geom_Surface.

 virtual void Geom_Plane::UReverse ( )
virtual

Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.

Reimplemented from Geom_ElementarySurface.

 Standard_Real Geom_Plane::UReversedParameter ( const Standard_Real U ) const
virtual

Computes the u parameter on the modified plane, produced when reversing the u parametric of this plane, for any point of u parameter U on this plane. In the case of a plane, these methods return - -U.

Implements Geom_ElementarySurface.

 Handle< Geom_Curve > Geom_Plane::VIso ( const Standard_Real V ) const
virtual

Computes the V isoparametric curve. This is a Line parallel to the XAxis of the plane.

Implements Geom_Surface.

 virtual void Geom_Plane::VReverse ( )
virtual

Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.

Reimplemented from Geom_ElementarySurface.

 Standard_Real Geom_Plane::VReversedParameter ( const Standard_Real V ) const
virtual

Computes the v parameter on the modified plane, produced when reversing the v parametric of this plane, for any point of v parameter V on this plane. In the case of a plane, these methods return -V.

Implements Geom_ElementarySurface.

The documentation for this class was generated from the following file: