FairCurve_Energy Class Referenceabstract

necessary methodes to compute the energy of an FairCurve. More...

`#include <FairCurve_Energy.hxx>`

Inheritance diagram for FairCurve_Energy:
[legend]

## Public Member Functions

virtual Standard_Integer NbVariables () const
returns the number of variables of the energy. More...

virtual Standard_Boolean Value (const math_Vector &X, Standard_Real &E)
computes the values of the Energys E for the variable <X>. Returns True if the computation was done successfully, False otherwise. More...

virtual Standard_Boolean Gradient (const math_Vector &X, math_Vector &G)
computes the gradient <G> of the energys for the variable <X>. Returns True if the computation was done successfully, False otherwise. More...

virtual Standard_Boolean Values (const math_Vector &X, Standard_Real &E, math_Vector &G)
computes the Energy <E> and the gradient <G> of the energy for the variable <X>. Returns True if the computation was done successfully, False otherwise. More...

virtual Standard_Boolean Values (const math_Vector &X, Standard_Real &E, math_Vector &G, math_Matrix &H)
computes the Energy <E>, the gradient <G> and the Hessian <H> of the energy for the variable <X>. Returns True if the computation was done successfully, False otherwise. More...

virtual Standard_Boolean Variable (math_Vector &X) const
compute the variables <X> wich correspond with the field <MyPoles> More...

const Handle< TColgp_HArray1OfPnt2d > & Poles () const
return the poles More...

Public Member Functions inherited from math_MultipleVarFunction
virtual Standard_Integer GetStateNumber ()
return the state of the function corresponding to the latestt call of any methods associated to the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state. More...

virtual ~math_MultipleVarFunction ()

## Protected Member Functions

FairCurve_Energy (const Handle< TColgp_HArray1OfPnt2d > &Poles, const Standard_Integer ConstrOrder1, const Standard_Integer ConstrOrder2, const Standard_Boolean WithAuxValue=Standard_False, const Standard_Real Angle1=0, const Standard_Real Angle2=0, const Standard_Integer Degree=2, const Standard_Real Curvature1=0, const Standard_Real Curvature2=0)
Angles corresspond to the Ox axis ConstrOrder1(2) can be equal to 0, 1 or 2. More...

void Gradient1 (const math_Vector &TheVector, math_Vector &G)
It is use internaly to make the Gradient Vector <G> More...

void Hessian1 (const math_Vector &TheVector, math_Matrix &H)
It is use internaly to make the Hessian Matrix <H> More...

virtual void ComputePoles (const math_Vector &X)
compute the poles wich correspond with the variable X More...

Standard_Integer Indice (const Standard_Integer i, const Standard_Integer j) const

void ComputePolesG1 (const Standard_Integer Side, const Standard_Real Lambda, const gp_Pnt2d &P1, gp_Pnt2d &P2) const
compute the pole wich depend of variables and G1 constraint More...

void ComputePolesG2 (const Standard_Integer Side, const Standard_Real Lambda, const Standard_Real Rho, const gp_Pnt2d &P1, gp_Pnt2d &P2) const
compute the pole wich depend of variables and G2 constraint More...

virtual Standard_Boolean Compute (const Standard_Integer DerivativeOrder, math_Vector &Result)=0
compute the energy (and derivatives) in intermediat format More...

## Protected Attributes

Handle< TColgp_HArray1OfPnt2dMyPoles

Standard_Integer MyContrOrder1

Standard_Integer MyContrOrder2

Standard_Boolean MyWithAuxValue

Standard_Integer MyNbVar

## Detailed Description

necessary methodes to compute the energy of an FairCurve.

## Constructor & Destructor Documentation

 FairCurve_Energy::FairCurve_Energy ( const Handle< TColgp_HArray1OfPnt2d > & Poles, const Standard_Integer ConstrOrder1, const Standard_Integer ConstrOrder2, const Standard_Boolean WithAuxValue = `Standard_False`, const Standard_Real Angle1 = `0`, const Standard_Real Angle2 = `0`, const Standard_Integer Degree = `2`, const Standard_Real Curvature1 = `0`, const Standard_Real Curvature2 = `0` )
protected

Angles corresspond to the Ox axis ConstrOrder1(2) can be equal to 0, 1 or 2.

## Member Function Documentation

 virtual Standard_Boolean FairCurve_Energy::Compute ( const Standard_Integer DerivativeOrder, math_Vector & Result )
protectedpure virtual

compute the energy (and derivatives) in intermediat format

Implemented in FairCurve_EnergyOfMVC, and FairCurve_EnergyOfBatten.

 virtual void FairCurve_Energy::ComputePoles ( const math_Vector & X )
protectedvirtual

compute the poles wich correspond with the variable X

Reimplemented in FairCurve_EnergyOfMVC, and FairCurve_EnergyOfBatten.

 void FairCurve_Energy::ComputePolesG1 ( const Standard_Integer Side, const Standard_Real Lambda, const gp_Pnt2d & P1, gp_Pnt2d & P2 ) const
protected

compute the pole wich depend of variables and G1 constraint

 void FairCurve_Energy::ComputePolesG2 ( const Standard_Integer Side, const Standard_Real Lambda, const Standard_Real Rho, const gp_Pnt2d & P1, gp_Pnt2d & P2 ) const
protected

compute the pole wich depend of variables and G2 constraint

 virtual Standard_Boolean FairCurve_Energy::Gradient ( const math_Vector & X, math_Vector & G )
virtual

computes the gradient <G> of the energys for the variable <X>. Returns True if the computation was done successfully, False otherwise.

Implements math_MultipleVarFunctionWithHessian.

 void FairCurve_Energy::Gradient1 ( const math_Vector & TheVector, math_Vector & G )
protected

It is use internaly to make the Gradient Vector <G>

 void FairCurve_Energy::Hessian1 ( const math_Vector & TheVector, math_Matrix & H )
protected

It is use internaly to make the Hessian Matrix <H>

 Standard_Integer FairCurve_Energy::Indice ( const Standard_Integer i, const Standard_Integer j ) const
protected
 virtual Standard_Integer FairCurve_Energy::NbVariables ( ) const
virtual

returns the number of variables of the energy.

Implements math_MultipleVarFunctionWithHessian.

 const Handle< TColgp_HArray1OfPnt2d >& FairCurve_Energy::Poles ( ) const

return the poles

 virtual Standard_Boolean FairCurve_Energy::Value ( const math_Vector & X, Standard_Real & E )
virtual

computes the values of the Energys E for the variable <X>. Returns True if the computation was done successfully, False otherwise.

Implements math_MultipleVarFunctionWithHessian.

 virtual Standard_Boolean FairCurve_Energy::Values ( const math_Vector & X, Standard_Real & E, math_Vector & G )
virtual

computes the Energy <E> and the gradient <G> of the energy for the variable <X>. Returns True if the computation was done successfully, False otherwise.

Implements math_MultipleVarFunctionWithHessian.

 virtual Standard_Boolean FairCurve_Energy::Values ( const math_Vector & X, Standard_Real & E, math_Vector & G, math_Matrix & H )
virtual

computes the Energy <E>, the gradient <G> and the Hessian <H> of the energy for the variable <X>. Returns True if the computation was done successfully, False otherwise.

Implements math_MultipleVarFunctionWithHessian.

 virtual Standard_Boolean FairCurve_Energy::Variable ( math_Vector & X ) const
virtual

compute the variables <X> wich correspond with the field <MyPoles>

Reimplemented in FairCurve_EnergyOfMVC, and FairCurve_EnergyOfBatten.

## Field Documentation

 Standard_Integer FairCurve_Energy::MyContrOrder1
protected
 Standard_Integer FairCurve_Energy::MyContrOrder2
protected
 Standard_Integer FairCurve_Energy::MyNbVar
protected
 Handle< TColgp_HArray1OfPnt2d > FairCurve_Energy::MyPoles
protected
 Standard_Boolean FairCurve_Energy::MyWithAuxValue
protected

The documentation for this class was generated from the following file: