Open CASCADE Technology 7.8.0
Static Public Member Functions
BSplCLib Class Reference

BSplCLib B-spline curve Library. More...

#include <BSplCLib.hxx>

Static Public Member Functions

static void Hunt (const TColStd_Array1OfReal &theArray, const Standard_Real theX, Standard_Integer &theXPos)
 This routine searches the position of the real value theX in the monotonically increasing set of real values theArray using bisection algorithm.
 
static Standard_Integer FirstUKnotIndex (const Standard_Integer Degree, const TColStd_Array1OfInteger &Mults)
 Computes the index of the knots value which gives the start point of the curve.
 
static Standard_Integer LastUKnotIndex (const Standard_Integer Degree, const TColStd_Array1OfInteger &Mults)
 Computes the index of the knots value which gives the end point of the curve.
 
static Standard_Integer FlatIndex (const Standard_Integer Degree, const Standard_Integer Index, const TColStd_Array1OfInteger &Mults, const Standard_Boolean Periodic)
 Computes the index of the flats knots sequence corresponding to <Index> in the knots sequence which multiplicities are <Mults>.
 
static void LocateParameter (const Standard_Integer Degree, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const Standard_Real U, const Standard_Boolean IsPeriodic, const Standard_Integer FromK1, const Standard_Integer ToK2, Standard_Integer &KnotIndex, Standard_Real &NewU)
 Locates the parametric value U in the knots sequence between the knot K1 and the knot K2. The value return in Index verifies.
 
static void LocateParameter (const Standard_Integer Degree, const TColStd_Array1OfReal &Knots, const Standard_Real U, const Standard_Boolean IsPeriodic, const Standard_Integer FromK1, const Standard_Integer ToK2, Standard_Integer &KnotIndex, Standard_Real &NewU)
 Locates the parametric value U in the knots sequence between the knot K1 and the knot K2. The value return in Index verifies.
 
static void LocateParameter (const Standard_Integer Degree, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, const Standard_Real U, const Standard_Boolean Periodic, Standard_Integer &Index, Standard_Real &NewU)
 
static Standard_Integer MaxKnotMult (const TColStd_Array1OfInteger &Mults, const Standard_Integer K1, const Standard_Integer K2)
 Finds the greatest multiplicity in a set of knots between K1 and K2. Mults is the multiplicity associated with each knot value.
 
static Standard_Integer MinKnotMult (const TColStd_Array1OfInteger &Mults, const Standard_Integer K1, const Standard_Integer K2)
 Finds the lowest multiplicity in a set of knots between K1 and K2. Mults is the multiplicity associated with each knot value.
 
static Standard_Integer NbPoles (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfInteger &Mults)
 Returns the number of poles of the curve. Returns 0 if one of the multiplicities is incorrect.
 
static Standard_Integer KnotSequenceLength (const TColStd_Array1OfInteger &Mults, const Standard_Integer Degree, const Standard_Boolean Periodic)
 Returns the length of the sequence of knots with repetition.
 
static void KnotSequence (const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColStd_Array1OfReal &KnotSeq, const Standard_Boolean Periodic=Standard_False)
 
static void KnotSequence (const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const Standard_Integer Degree, const Standard_Boolean Periodic, TColStd_Array1OfReal &KnotSeq)
 Computes the sequence of knots KnotSeq with repetition of the knots of multiplicity greater than 1.
 
static Standard_Integer KnotsLength (const TColStd_Array1OfReal &KnotSeq, const Standard_Boolean Periodic=Standard_False)
 Returns the length of the sequence of knots (and Mults) without repetition.
 
static void Knots (const TColStd_Array1OfReal &KnotSeq, TColStd_Array1OfReal &Knots, TColStd_Array1OfInteger &Mults, const Standard_Boolean Periodic=Standard_False)
 Computes the sequence of knots Knots without repetition of the knots of multiplicity greater than 1.
 
static BSplCLib_KnotDistribution KnotForm (const TColStd_Array1OfReal &Knots, const Standard_Integer FromK1, const Standard_Integer ToK2)
 Analyses if the knots distribution is "Uniform" or "NonUniform" between the knot FromK1 and the knot ToK2. There is no repetition of knot in the knots'sequence <Knots>.
 
static BSplCLib_MultDistribution MultForm (const TColStd_Array1OfInteger &Mults, const Standard_Integer FromK1, const Standard_Integer ToK2)
 Analyses the distribution of multiplicities between the knot FromK1 and the Knot ToK2.
 
static void KnotAnalysis (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &CKnots, const TColStd_Array1OfInteger &CMults, GeomAbs_BSplKnotDistribution &KnotForm, Standard_Integer &MaxKnotMult)
 Analyzes the array of knots. Returns the form and the maximum knot multiplicity.
 
static void Reparametrize (const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal &Knots)
 Reparametrizes a B-spline curve to [U1, U2]. The knot values are recomputed such that Knots (Lower) = U1 and Knots (Upper) = U2 but the knot form is not modified. Warnings : In the array Knots the values must be in ascending order. U1 must not be equal to U2 to avoid division by zero.
 
static void Reverse (TColStd_Array1OfReal &Knots)
 Reverses the array knots to become the knots sequence of the reversed curve.
 
static void Reverse (TColStd_Array1OfInteger &Mults)
 Reverses the array of multiplicities.
 
static void Reverse (TColgp_Array1OfPnt &Poles, const Standard_Integer Last)
 Reverses the array of poles. Last is the index of the new first pole. On a non periodic curve last is Poles.Upper(). On a periodic curve last is.
 
static void Reverse (TColgp_Array1OfPnt2d &Poles, const Standard_Integer Last)
 Reverses the array of poles.
 
static void Reverse (TColStd_Array1OfReal &Weights, const Standard_Integer Last)
 Reverses the array of poles.
 
static Standard_Boolean IsRational (const TColStd_Array1OfReal &Weights, const Standard_Integer I1, const Standard_Integer I2, const Standard_Real Epsilon=0.0)
 Returns False if all the weights of the array <Weights> between I1 an I2 are identic. Epsilon is used for comparing weights. If Epsilon is 0. the Epsilon of the first weight is used.
 
static Standard_Integer MaxDegree ()
 returns the degree maxima for a BSplineCurve.
 
static void Eval (const Standard_Real U, const Standard_Integer Degree, Standard_Real &Knots, const Standard_Integer Dimension, Standard_Real &Poles)
 Perform the Boor algorithm to evaluate a point at parameter , with <Degree> and <Dimension>.
 
static void BoorScheme (const Standard_Real U, const Standard_Integer Degree, Standard_Real &Knots, const Standard_Integer Dimension, Standard_Real &Poles, const Standard_Integer Depth, const Standard_Integer Length)
 Performs the Boor Algorithm at parameter with the given <Degree> and the array of <Knots> on the poles <Poles> of dimension <Dimension>. The schema is computed until level <Depth> on a basis of <Length+1> poles.
 
static Standard_Boolean AntiBoorScheme (const Standard_Real U, const Standard_Integer Degree, Standard_Real &Knots, const Standard_Integer Dimension, Standard_Real &Poles, const Standard_Integer Depth, const Standard_Integer Length, const Standard_Real Tolerance)
 Compute the content of Pole before the BoorScheme. This method is used to remove poles.
 
static void Derivative (const Standard_Integer Degree, Standard_Real &Knots, const Standard_Integer Dimension, const Standard_Integer Length, const Standard_Integer Order, Standard_Real &Poles)
 Computes the poles of the BSpline giving the derivatives of order <Order>.
 
static void Bohm (const Standard_Real U, const Standard_Integer Degree, const Standard_Integer N, Standard_Real &Knots, const Standard_Integer Dimension, Standard_Real &Poles)
 Performs the Bohm Algorithm at parameter . This algorithm computes the value and all the derivatives up to order N (N <= Degree).
 
static TColStd_Array1OfRealNoWeights ()
 Used as argument for a non rational curve.
 
static TColStd_Array1OfIntegerNoMults ()
 Used as argument for a flatknots evaluation.
 
static void BuildKnots (const Standard_Integer Degree, const Standard_Integer Index, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, Standard_Real &LK)
 Stores in LK the useful knots for the BoorSchem on the span Knots(Index) - Knots(Index+1)
 
static Standard_Integer PoleIndex (const Standard_Integer Degree, const Standard_Integer Index, const Standard_Boolean Periodic, const TColStd_Array1OfInteger &Mults)
 Return the index of the first Pole to use on the span Mults(Index) - Mults(Index+1). This index must be added to Poles.Lower().
 
static void BuildEval (const Standard_Integer Degree, const Standard_Integer Index, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal *Weights, Standard_Real &LP)
 
static void BuildEval (const Standard_Integer Degree, const Standard_Integer Index, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, Standard_Real &LP)
 
static void BuildEval (const Standard_Integer Degree, const Standard_Integer Index, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, Standard_Real &LP)
 Copy in <LP> the poles and weights for the Eval scheme. starting from Poles(Poles.Lower()+Index)
 
static void BuildBoor (const Standard_Integer Index, const Standard_Integer Length, const Standard_Integer Dimension, const TColStd_Array1OfReal &Poles, Standard_Real &LP)
 Copy in <LP> poles for <Dimension> Boor scheme. Starting from <Index> * <Dimension>, copy <Length+1> poles.
 
static Standard_Integer BoorIndex (const Standard_Integer Index, const Standard_Integer Length, const Standard_Integer Depth)
 Returns the index in the Boor result array of the poles <Index>. If the Boor algorithm was perform with <Length> and <Depth>.
 
static void GetPole (const Standard_Integer Index, const Standard_Integer Length, const Standard_Integer Depth, const Standard_Integer Dimension, Standard_Real &LocPoles, Standard_Integer &Position, TColStd_Array1OfReal &Pole)
 Copy the pole at position <Index> in the Boor scheme of dimension <Dimension> to <Position> in the array <Pole>. <Position> is updated.
 
static Standard_Boolean PrepareInsertKnots (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const TColStd_Array1OfReal &AddKnots, const TColStd_Array1OfInteger *AddMults, Standard_Integer &NbPoles, Standard_Integer &NbKnots, const Standard_Real Epsilon, const Standard_Boolean Add=Standard_True)
 Returns in <NbPoles, NbKnots> the new number of poles and knots if the sequence of knots <AddKnots, AddMults> is inserted in the sequence <Knots, Mults>.
 
static void InsertKnots (const Standard_Integer Degree, const Standard_Boolean Periodic, const Standard_Integer Dimension, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const TColStd_Array1OfReal &AddKnots, const TColStd_Array1OfInteger *AddMults, TColStd_Array1OfReal &NewPoles, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, const Standard_Real Epsilon, const Standard_Boolean Add=Standard_True)
 
static void InsertKnots (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const TColStd_Array1OfReal &AddKnots, const TColStd_Array1OfInteger *AddMults, TColgp_Array1OfPnt &NewPoles, TColStd_Array1OfReal *NewWeights, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, const Standard_Real Epsilon, const Standard_Boolean Add=Standard_True)
 
static void InsertKnots (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const TColStd_Array1OfReal &AddKnots, const TColStd_Array1OfInteger *AddMults, TColgp_Array1OfPnt2d &NewPoles, TColStd_Array1OfReal *NewWeights, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, const Standard_Real Epsilon, const Standard_Boolean Add=Standard_True)
 Insert a sequence of knots <AddKnots> with multiplicities <AddMults>. <AddKnots> must be a non decreasing sequence and verifies :
 
static void InsertKnot (const Standard_Integer UIndex, const Standard_Real U, const Standard_Integer UMult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColgp_Array1OfPnt &NewPoles, TColStd_Array1OfReal *NewWeights)
 
static void InsertKnot (const Standard_Integer UIndex, const Standard_Real U, const Standard_Integer UMult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColgp_Array1OfPnt2d &NewPoles, TColStd_Array1OfReal *NewWeights)
 Insert a new knot U of multiplicity UMult in the knot sequence.
 
static void RaiseMultiplicity (const Standard_Integer KnotIndex, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColgp_Array1OfPnt &NewPoles, TColStd_Array1OfReal *NewWeights)
 
static void RaiseMultiplicity (const Standard_Integer KnotIndex, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColgp_Array1OfPnt2d &NewPoles, TColStd_Array1OfReal *NewWeights)
 Raise the multiplicity of knot to <UMult>.
 
static Standard_Boolean RemoveKnot (const Standard_Integer Index, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const Standard_Integer Dimension, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColStd_Array1OfReal &NewPoles, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, const Standard_Real Tolerance)
 
static Standard_Boolean RemoveKnot (const Standard_Integer Index, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColgp_Array1OfPnt &NewPoles, TColStd_Array1OfReal *NewWeights, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, const Standard_Real Tolerance)
 
static Standard_Boolean RemoveKnot (const Standard_Integer Index, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColgp_Array1OfPnt2d &NewPoles, TColStd_Array1OfReal *NewWeights, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, const Standard_Real Tolerance)
 Decrement the multiplicity of <Knots(Index)> to <Mult>. If <Mult> is null the knot is removed.
 
static Standard_Integer IncreaseDegreeCountKnots (const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const TColStd_Array1OfInteger &Mults)
 Returns the number of knots of a curve with multiplicities <Mults> after elevating the degree from <Degree> to <NewDegree>. See the IncreaseDegree method for more comments.
 
static void IncreaseDegree (const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const Standard_Integer Dimension, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColStd_Array1OfReal &NewPoles, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults)
 
static void IncreaseDegree (const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColgp_Array1OfPnt &NewPoles, TColStd_Array1OfReal *NewWeights, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults)
 
static void IncreaseDegree (const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, TColgp_Array1OfPnt2d &NewPoles, TColStd_Array1OfReal *NewWeights, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults)
 
static void IncreaseDegree (const Standard_Integer NewDegree, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, TColgp_Array1OfPnt &NewPoles, TColStd_Array1OfReal *NewWeights)
 
static void IncreaseDegree (const Standard_Integer theNewDegree, const TColgp_Array1OfPnt2d &thePoles, const TColStd_Array1OfReal *theWeights, TColgp_Array1OfPnt2d &theNewPoles, TColStd_Array1OfReal *theNewWeights)
 Increase the degree of a bspline (or bezier) curve of dimension theDimension form theDegree to theNewDegree.
 
static void PrepareUnperiodize (const Standard_Integer Degree, const TColStd_Array1OfInteger &Mults, Standard_Integer &NbKnots, Standard_Integer &NbPoles)
 Set in <NbKnots> and <NbPolesToAdd> the number of Knots and Poles of the NotPeriodic Curve identical at the periodic curve with a degree <Degree> , a knots-distribution with Multiplicities <Mults>.
 
static void Unperiodize (const Standard_Integer Degree, const Standard_Integer Dimension, const TColStd_Array1OfInteger &Mults, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfReal &Poles, TColStd_Array1OfInteger &NewMults, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfReal &NewPoles)
 
static void Unperiodize (const Standard_Integer Degree, const TColStd_Array1OfInteger &Mults, const TColStd_Array1OfReal &Knots, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, TColStd_Array1OfInteger &NewMults, TColStd_Array1OfReal &NewKnots, TColgp_Array1OfPnt &NewPoles, TColStd_Array1OfReal *NewWeights)
 
static void Unperiodize (const Standard_Integer Degree, const TColStd_Array1OfInteger &Mults, const TColStd_Array1OfReal &Knots, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, TColStd_Array1OfInteger &NewMults, TColStd_Array1OfReal &NewKnots, TColgp_Array1OfPnt2d &NewPoles, TColStd_Array1OfReal *NewWeights)
 
static void PrepareTrimming (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const Standard_Real U1, const Standard_Real U2, Standard_Integer &NbKnots, Standard_Integer &NbPoles)
 Set in <NbKnots> and <NbPoles> the number of Knots and Poles of the curve resulting from the trimming of the BSplinecurve defined with <degree>, <knots>, <mults>
 
static void Trimming (const Standard_Integer Degree, const Standard_Boolean Periodic, const Standard_Integer Dimension, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const TColStd_Array1OfReal &Poles, const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, TColStd_Array1OfReal &NewPoles)
 
static void Trimming (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, TColgp_Array1OfPnt &NewPoles, TColStd_Array1OfReal *NewWeights)
 
static void Trimming (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger &Mults, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal &NewKnots, TColStd_Array1OfInteger &NewMults, TColgp_Array1OfPnt2d &NewPoles, TColStd_Array1OfReal *NewWeights)
 
static void D0 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, Standard_Real &P)
 
static void D0 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Pnt &P)
 
static void D0 (const Standard_Real U, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Pnt2d &P)
 
static void D0 (const Standard_Real U, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &P)
 
static void D0 (const Standard_Real U, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &P)
 
static void D1 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, Standard_Real &P, Standard_Real &V)
 
static void D1 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Pnt &P, gp_Vec &V)
 
static void D1 (const Standard_Real U, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Pnt2d &P, gp_Vec2d &V)
 
static void D1 (const Standard_Real U, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &P, gp_Vec &V)
 
static void D1 (const Standard_Real U, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &P, gp_Vec2d &V)
 
static void D2 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, Standard_Real &P, Standard_Real &V1, Standard_Real &V2)
 
static void D2 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Pnt &P, gp_Vec &V1, gp_Vec &V2)
 
static void D2 (const Standard_Real U, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Pnt2d &P, gp_Vec2d &V1, gp_Vec2d &V2)
 
static void D2 (const Standard_Real U, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &P, gp_Vec &V1, gp_Vec &V2)
 
static void D2 (const Standard_Real U, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &P, gp_Vec2d &V1, gp_Vec2d &V2)
 
static void D3 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, Standard_Real &P, Standard_Real &V1, Standard_Real &V2, Standard_Real &V3)
 
static void D3 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Pnt &P, gp_Vec &V1, gp_Vec &V2, gp_Vec &V3)
 
static void D3 (const Standard_Real U, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Pnt2d &P, gp_Vec2d &V1, gp_Vec2d &V2, gp_Vec2d &V3)
 
static void D3 (const Standard_Real U, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &P, gp_Vec &V1, gp_Vec &V2, gp_Vec &V3)
 
static void D3 (const Standard_Real U, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &P, gp_Vec2d &V1, gp_Vec2d &V2, gp_Vec2d &V3)
 
static void DN (const Standard_Real U, const Standard_Integer N, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, Standard_Real &VN)
 
static void DN (const Standard_Real U, const Standard_Integer N, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Vec &VN)
 
static void DN (const Standard_Real U, const Standard_Integer N, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &Knots, const TColStd_Array1OfInteger *Mults, gp_Vec2d &V)
 
static void DN (const Standard_Real U, const Standard_Integer N, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal &Weights, gp_Pnt &P, gp_Vec &VN)
 
static void DN (const Standard_Real U, const Standard_Integer N, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal &Weights, gp_Pnt2d &P, gp_Vec2d &VN)
 The above functions compute values and derivatives in the following situations :
 
static Standard_Integer EvalBsplineBasis (const Standard_Integer DerivativeOrder, const Standard_Integer Order, const TColStd_Array1OfReal &FlatKnots, const Standard_Real Parameter, Standard_Integer &FirstNonZeroBsplineIndex, math_Matrix &BsplineBasis, const Standard_Boolean isPeriodic=Standard_False)
 This evaluates the Bspline Basis at a given parameter Parameter up to the requested DerivativeOrder and store the result in the array BsplineBasis in the following fashion BSplineBasis(1,1) = value of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex BsplineBasis(1,2) = value of second non vanishing Bspline function which has Index FirstNonZeroBsplineIndex + 1 BsplineBasis(1,n) = value of second non vanishing non vanishing Bspline function which has Index FirstNonZeroBsplineIndex + n (n <= Order) BSplineBasis(2,1) = value of derivative of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex BSplineBasis(N,1) = value of Nth derivative of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex if N <= DerivativeOrder + 1.
 
static Standard_Integer BuildBSpMatrix (const TColStd_Array1OfReal &Parameters, const TColStd_Array1OfInteger &OrderArray, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer Degree, math_Matrix &Matrix, Standard_Integer &UpperBandWidth, Standard_Integer &LowerBandWidth)
 This Builds a fully blown Matrix of (ni) Bi (tj)
 
static Standard_Integer FactorBandedMatrix (math_Matrix &Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, Standard_Integer &PivotIndexProblem)
 this factors the Banded Matrix in the LU form with a Banded storage of components of the L matrix WARNING : do not use if the Matrix is totally positive (It is the case for Bspline matrices build as above with parameters being the Schoenberg points
 
static Standard_Integer SolveBandedSystem (const math_Matrix &Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, const Standard_Integer ArrayDimension, Standard_Real &Array)
 This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension.
 
static Standard_Integer SolveBandedSystem (const math_Matrix &Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, TColgp_Array1OfPnt2d &Array)
 This solves the system Matrix.X = B with when Matrix is factored in LU form The Array has the length of the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension.
 
static Standard_Integer SolveBandedSystem (const math_Matrix &Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, TColgp_Array1OfPnt &Array)
 This solves the system Matrix.X = B with when Matrix is factored in LU form The Array has the length of the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension.
 
static Standard_Integer SolveBandedSystem (const math_Matrix &Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, const Standard_Boolean HomogenousFlag, const Standard_Integer ArrayDimension, Standard_Real &Array, Standard_Real &Weights)
 
static Standard_Integer SolveBandedSystem (const math_Matrix &Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, const Standard_Boolean HomogenousFlag, TColgp_Array1OfPnt2d &Array, TColStd_Array1OfReal &Weights)
 This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension. If HomogeneousFlag == 0 the Poles are multiplied by the Weights upon Entry and once interpolation is carried over the result of the poles are divided by the result of the interpolation of the weights. Otherwise if HomogenousFlag == 1 the Poles and Weigths are treated homogeneously that is that those are interpolated as they are and result is returned without division by the interpolated weigths.
 
static Standard_Integer SolveBandedSystem (const math_Matrix &Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, const Standard_Boolean HomogeneousFlag, TColgp_Array1OfPnt &Array, TColStd_Array1OfReal &Weights)
 This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension If HomogeneousFlag == 0 the Poles are multiplied by the Weights upon Entry and once interpolation is carried over the result of the poles are divided by the result of the interpolation of the weights. Otherwise if HomogenousFlag == 1 the Poles and Weigths are treated homogeneously that is that those are interpolated as they are and result is returned without division by the interpolated weigths.
 
static void MergeBSplineKnots (const Standard_Real Tolerance, const Standard_Real StartValue, const Standard_Real EndValue, const Standard_Integer Degree1, const TColStd_Array1OfReal &Knots1, const TColStd_Array1OfInteger &Mults1, const Standard_Integer Degree2, const TColStd_Array1OfReal &Knots2, const TColStd_Array1OfInteger &Mults2, Standard_Integer &NumPoles, Handle< TColStd_HArray1OfReal > &NewKnots, Handle< TColStd_HArray1OfInteger > &NewMults)
 Merges two knot vector by setting the starting and ending values to StartValue and EndValue.
 
static void FunctionReparameterise (const BSplCLib_EvaluatorFunction &Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal &BSplineFlatKnots, const Standard_Integer PolesDimension, Standard_Real &Poles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer NewDegree, Standard_Real &NewPoles, Standard_Integer &theStatus)
 This function will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following:
 
static void FunctionReparameterise (const BSplCLib_EvaluatorFunction &Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal &BSplineFlatKnots, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer NewDegree, TColStd_Array1OfReal &NewPoles, Standard_Integer &theStatus)
 This function will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following:
 
static void FunctionReparameterise (const BSplCLib_EvaluatorFunction &Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal &BSplineFlatKnots, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer NewDegree, TColgp_Array1OfPnt &NewPoles, Standard_Integer &theStatus)
 this will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following : 1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots
 
static void FunctionReparameterise (const BSplCLib_EvaluatorFunction &Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal &BSplineFlatKnots, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer NewDegree, TColgp_Array1OfPnt2d &NewPoles, Standard_Integer &theStatus)
 this will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following : 1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots
 
static void FunctionMultiply (const BSplCLib_EvaluatorFunction &Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal &BSplineFlatKnots, const Standard_Integer PolesDimension, Standard_Real &Poles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer NewDegree, Standard_Real &NewPoles, Standard_Integer &theStatus)
 this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions
 
static void FunctionMultiply (const BSplCLib_EvaluatorFunction &Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal &BSplineFlatKnots, const TColStd_Array1OfReal &Poles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer NewDegree, TColStd_Array1OfReal &NewPoles, Standard_Integer &theStatus)
 this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions
 
static void FunctionMultiply (const BSplCLib_EvaluatorFunction &Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal &BSplineFlatKnots, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer NewDegree, TColgp_Array1OfPnt2d &NewPoles, Standard_Integer &theStatus)
 this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions
 
static void FunctionMultiply (const BSplCLib_EvaluatorFunction &Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal &BSplineFlatKnots, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer NewDegree, TColgp_Array1OfPnt &NewPoles, Standard_Integer &theStatus)
 this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions
 
static void Eval (const Standard_Real U, const Standard_Boolean PeriodicFlag, const Standard_Integer DerivativeRequest, Standard_Integer &ExtrapMode, const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer ArrayDimension, Standard_Real &Poles, Standard_Real &Result)
 Perform the De Boor algorithm to evaluate a point at parameter , with <Degree> and <Dimension>.
 
static void Eval (const Standard_Real U, const Standard_Boolean PeriodicFlag, const Standard_Integer DerivativeRequest, Standard_Integer &ExtrapMode, const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer ArrayDimension, Standard_Real &Poles, Standard_Real &Weights, Standard_Real &PolesResult, Standard_Real &WeightsResult)
 Perform the De Boor algorithm to evaluate a point at parameter , with <Degree> and <Dimension>. Evaluates by multiplying the Poles by the Weights and gives the homogeneous result in PolesResult that is the results of the evaluation of the numerator once it has been multiplied by the weights and in WeightsResult one has the result of the evaluation of the denominator.
 
static void Eval (const Standard_Real U, const Standard_Boolean PeriodicFlag, const Standard_Boolean HomogeneousFlag, Standard_Integer &ExtrapMode, const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal &Weights, gp_Pnt &Point, Standard_Real &Weight)
 Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point.
 
static void Eval (const Standard_Real U, const Standard_Boolean PeriodicFlag, const Standard_Boolean HomogeneousFlag, Standard_Integer &ExtrapMode, const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal &Weights, gp_Pnt2d &Point, Standard_Real &Weight)
 Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point.
 
static void TangExtendToConstraint (const TColStd_Array1OfReal &FlatKnots, const Standard_Real C1Coefficient, const Standard_Integer NumPoles, Standard_Real &Poles, const Standard_Integer Dimension, const Standard_Integer Degree, const TColStd_Array1OfReal &ConstraintPoint, const Standard_Integer Continuity, const Standard_Boolean After, Standard_Integer &NbPolesResult, Standard_Integer &NbKnotsRsult, Standard_Real &KnotsResult, Standard_Real &PolesResult)
 Extend a BSpline nD using the tangency map <C1Coefficient> is the coefficient of reparametrisation <Continuity> must be equal to 1, 2 or 3. <Degree> must be greater or equal than <Continuity> + 1.
 
static void CacheD0 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &Point)
 Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects.
 
static void CacheD0 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &Point)
 Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point.
 
static void CoefsD0 (const Standard_Real U, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &Point)
 Calls CacheD0 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!
 
static void CoefsD0 (const Standard_Real U, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &Point)
 Calls CacheD0 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!
 
static void CacheD1 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &Point, gp_Vec &Vec)
 Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects.
 
static void CacheD1 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &Point, gp_Vec2d &Vec)
 Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point.
 
static void CoefsD1 (const Standard_Real U, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &Point, gp_Vec &Vec)
 Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!
 
static void CoefsD1 (const Standard_Real U, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &Point, gp_Vec2d &Vec)
 Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!
 
static void CacheD2 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &Point, gp_Vec &Vec1, gp_Vec &Vec2)
 Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects.
 
static void CacheD2 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &Point, gp_Vec2d &Vec1, gp_Vec2d &Vec2)
 Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point.
 
static void CoefsD2 (const Standard_Real U, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &Point, gp_Vec &Vec1, gp_Vec &Vec2)
 Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!
 
static void CoefsD2 (const Standard_Real U, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &Point, gp_Vec2d &Vec1, gp_Vec2d &Vec2)
 Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!
 
static void CacheD3 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &Point, gp_Vec &Vec1, gp_Vec &Vec2, gp_Vec &Vec3)
 Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects.
 
static void CacheD3 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &Point, gp_Vec2d &Vec1, gp_Vec2d &Vec2, gp_Vec2d &Vec3)
 Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point.
 
static void CoefsD3 (const Standard_Real U, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt &Point, gp_Vec &Vec1, gp_Vec &Vec2, gp_Vec &Vec3)
 Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!
 
static void CoefsD3 (const Standard_Real U, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, gp_Pnt2d &Point, gp_Vec2d &Vec1, gp_Vec2d &Vec2, gp_Vec2d &Vec3)
 Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!
 
static void BuildCache (const Standard_Real U, const Standard_Real InverseOfSpanDomain, const Standard_Boolean PeriodicFlag, const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, TColgp_Array1OfPnt &CachePoles, TColStd_Array1OfReal *CacheWeights)
 Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles.
 
static void BuildCache (const Standard_Real U, const Standard_Real InverseOfSpanDomain, const Standard_Boolean PeriodicFlag, const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, TColgp_Array1OfPnt2d &CachePoles, TColStd_Array1OfReal *CacheWeights)
 Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles.
 
static void BuildCache (const Standard_Real theParameter, const Standard_Real theSpanDomain, const Standard_Boolean thePeriodicFlag, const Standard_Integer theDegree, const Standard_Integer theSpanIndex, const TColStd_Array1OfReal &theFlatKnots, const TColgp_Array1OfPnt &thePoles, const TColStd_Array1OfReal *theWeights, TColStd_Array2OfReal &theCacheArray)
 Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. Structure of result optimized for BSplCLib_Cache.
 
static void BuildCache (const Standard_Real theParameter, const Standard_Real theSpanDomain, const Standard_Boolean thePeriodicFlag, const Standard_Integer theDegree, const Standard_Integer theSpanIndex, const TColStd_Array1OfReal &theFlatKnots, const TColgp_Array1OfPnt2d &thePoles, const TColStd_Array1OfReal *theWeights, TColStd_Array2OfReal &theCacheArray)
 Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. Structure of result optimized for BSplCLib_Cache.
 
static void PolesCoefficients (const TColgp_Array1OfPnt2d &Poles, TColgp_Array1OfPnt2d &CachePoles)
 
static void PolesCoefficients (const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, TColgp_Array1OfPnt2d &CachePoles, TColStd_Array1OfReal *CacheWeights)
 
static void PolesCoefficients (const TColgp_Array1OfPnt &Poles, TColgp_Array1OfPnt &CachePoles)
 
static void PolesCoefficients (const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, TColgp_Array1OfPnt &CachePoles, TColStd_Array1OfReal *CacheWeights)
 Encapsulation of BuildCache to perform the evaluation of the Taylor expansion for beziercurves at parameter 0. Warning: To be used for Beziercurves ONLY!!!
 
static const Standard_RealFlatBezierKnots (const Standard_Integer Degree)
 Returns pointer to statically allocated array representing flat knots for bezier curve of the specified degree. Raises OutOfRange if Degree > MaxDegree()
 
static void BuildSchoenbergPoints (const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, TColStd_Array1OfReal &Parameters)
 builds the Schoenberg points from the flat knot used to interpolate a BSpline since the BSpline matrix is invertible.
 
static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColStd_Array1OfReal &Parameters, const TColStd_Array1OfInteger &ContactOrderArray, TColgp_Array1OfPnt &Poles, Standard_Integer &InversionProblem)
 Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation or interpolation at Scheonberg points the method will work The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot.
 
static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColStd_Array1OfReal &Parameters, const TColStd_Array1OfInteger &ContactOrderArray, TColgp_Array1OfPnt2d &Poles, Standard_Integer &InversionProblem)
 Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem w ll report 0 if there was no problem else it will give the index of the faulty pivot.
 
static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColStd_Array1OfReal &Parameters, const TColStd_Array1OfInteger &ContactOrderArray, TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal &Weights, Standard_Integer &InversionProblem)
 Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot.
 
static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColStd_Array1OfReal &Parameters, const TColStd_Array1OfInteger &ContactOrderArray, TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal &Weights, Standard_Integer &InversionProblem)
 Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem w ll report 0 if there was no problem else it will give the i.
 
static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColStd_Array1OfReal &Parameters, const TColStd_Array1OfInteger &ContactOrderArray, const Standard_Integer ArrayDimension, Standard_Real &Poles, Standard_Integer &InversionProblem)
 Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray The length of FlatKnots is Degree + L + 1 The PolesArray is an seen as an Array[1..N][1..ArrayDimension] with N = tge length of the parameters array Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation or interpolation at Scheonberg points the method will work The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot.
 
static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal &FlatKnots, const TColStd_Array1OfReal &Parameters, const TColStd_Array1OfInteger &ContactOrderArray, const Standard_Integer ArrayDimension, Standard_Real &Poles, Standard_Real &Weights, Standard_Integer &InversionProblem)
 
static void MovePoint (const Standard_Real U, const gp_Vec2d &Displ, const Standard_Integer Index1, const Standard_Integer Index2, const Standard_Integer Degree, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &FlatKnots, Standard_Integer &FirstIndex, Standard_Integer &LastIndex, TColgp_Array1OfPnt2d &NewPoles)
 Find the new poles which allows an old point (with a given u as parameter) to reach a new position Index1 and Index2 indicate the range of poles we can move (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side don't enter (1,NbPoles) -> error: rigid move (2, NbPoles-1) -> the ends are enforced (3, NbPoles-2) -> the ends and the tangency are enforced if Problem in BSplineBasis calculation, no change for the curve and FirstIndex, LastIndex = 0.
 
static void MovePoint (const Standard_Real U, const gp_Vec &Displ, const Standard_Integer Index1, const Standard_Integer Index2, const Standard_Integer Degree, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &FlatKnots, Standard_Integer &FirstIndex, Standard_Integer &LastIndex, TColgp_Array1OfPnt &NewPoles)
 Find the new poles which allows an old point (with a given u as parameter) to reach a new position Index1 and Index2 indicate the range of poles we can move (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side don't enter (1,NbPoles) -> error: rigid move (2, NbPoles-1) -> the ends are enforced (3, NbPoles-2) -> the ends and the tangency are enforced if Problem in BSplineBasis calculation, no change for the curve and FirstIndex, LastIndex = 0.
 
static void MovePointAndTangent (const Standard_Real U, const Standard_Integer ArrayDimension, Standard_Real &Delta, Standard_Real &DeltaDerivative, const Standard_Real Tolerance, const Standard_Integer Degree, const Standard_Integer StartingCondition, const Standard_Integer EndingCondition, Standard_Real &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &FlatKnots, Standard_Real &NewPoles, Standard_Integer &ErrorStatus)
 This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.
 
static void MovePointAndTangent (const Standard_Real U, const gp_Vec &Delta, const gp_Vec &DeltaDerivative, const Standard_Real Tolerance, const Standard_Integer Degree, const Standard_Integer StartingCondition, const Standard_Integer EndingCondition, const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &FlatKnots, TColgp_Array1OfPnt &NewPoles, Standard_Integer &ErrorStatus)
 This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.
 
static void MovePointAndTangent (const Standard_Real U, const gp_Vec2d &Delta, const gp_Vec2d &DeltaDerivative, const Standard_Real Tolerance, const Standard_Integer Degree, const Standard_Integer StartingCondition, const Standard_Integer EndingCondition, const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &FlatKnots, TColgp_Array1OfPnt2d &NewPoles, Standard_Integer &ErrorStatus)
 This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.
 
static void Resolution (Standard_Real &PolesArray, const Standard_Integer ArrayDimension, const Standard_Integer NumPoles, const TColStd_Array1OfReal *Weights, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer Degree, const Standard_Real Tolerance3D, Standard_Real &UTolerance)
 given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D
 
static void Resolution (const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal *Weights, const Standard_Integer NumPoles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer Degree, const Standard_Real Tolerance3D, Standard_Real &UTolerance)
 given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D
 
static void Resolution (const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal *Weights, const Standard_Integer NumPoles, const TColStd_Array1OfReal &FlatKnots, const Standard_Integer Degree, const Standard_Real Tolerance3D, Standard_Real &UTolerance)
 given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D
 
static Standard_Integer Intervals (const TColStd_Array1OfReal &theKnots, const TColStd_Array1OfInteger &theMults, Standard_Integer theDegree, Standard_Boolean isPeriodic, Standard_Integer theContinuity, Standard_Real theFirst, Standard_Real theLast, Standard_Real theTolerance, TColStd_Array1OfReal *theIntervals)
 Splits the given range to BSpline intervals of given continuity.
 

Detailed Description

BSplCLib B-spline curve Library.

The BSplCLib package is a basic library for BSplines. It provides three categories of functions.

Methods for 2d and 3d BSplines curves rational or not rational.

Those methods have the following structure :

Note that the bspline surface methods found in the package BSplSLib uses the same structure and rely on BSplCLib.

In the following list of methods the 2d and 3d curve methods will be described with the corresponding multi-dimension method.

The 3d or 2d B-spline curve is defined with :

. its control points : TColgp_Array1OfPnt(2d) Poles . its weights : TColStd_Array1OfReal Weights . its knots : TColStd_Array1OfReal Knots . its multiplicities : TColStd_Array1OfInteger Mults . its degree : Standard_Integer Degree . its periodicity : Standard_Boolean Periodic

Warnings : The bounds of Poles and Weights should be the same. The bounds of Knots and Mults should be the same.

Note: weight and multiplicity arrays can be passed by pointer for some functions so that NULL pointer is valid. That means no weights/no multiplicities passed.

No weights (BSplCLib::NoWeights()) means the curve is non rational. No mults (BSplCLib::NoMults()) means the knots are "flat" knots.

KeyWords : B-spline curve, Functions, Library

References : . A survey of curves and surfaces methods in CADG Wolfgang BOHM CAGD 1 (1984) . On de Boor-like algorithms and blossoming Wolfgang BOEHM cagd 5 (1988) . Blossoming and knot insertion algorithms for B-spline curves Ronald N. GOLDMAN . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA . Curves and Surfaces for Computer Aided Geometric Design, a practical guide Gerald Farin

Member Function Documentation

◆ AntiBoorScheme()

static Standard_Boolean BSplCLib::AntiBoorScheme ( const Standard_Real  U,
const Standard_Integer  Degree,
Standard_Real Knots,
const Standard_Integer  Dimension,
Standard_Real Poles,
const Standard_Integer  Depth,
const Standard_Integer  Length,
const Standard_Real  Tolerance 
)
static

Compute the content of Pole before the BoorScheme. This method is used to remove poles.

U is the poles to remove, Knots should contains the knots of the curve after knot removal.

The first and last poles do not change, the other poles are computed by averaging two possible values. The distance between the two possible poles is computed, if it is higher than <Tolerance> False is returned.

◆ Bohm()

static void BSplCLib::Bohm ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Integer  N,
Standard_Real Knots,
const Standard_Integer  Dimension,
Standard_Real Poles 
)
static

Performs the Bohm Algorithm at parameter . This algorithm computes the value and all the derivatives up to order N (N <= Degree).

<Poles> is the original array of poles.

The result in <Poles> is the value and the derivatives. Poles[0] is the value, Poles[Degree] is the last derivative.

◆ BoorIndex()

static Standard_Integer BSplCLib::BoorIndex ( const Standard_Integer  Index,
const Standard_Integer  Length,
const Standard_Integer  Depth 
)
static

Returns the index in the Boor result array of the poles <Index>. If the Boor algorithm was perform with <Length> and <Depth>.

◆ BoorScheme()

static void BSplCLib::BoorScheme ( const Standard_Real  U,
const Standard_Integer  Degree,
Standard_Real Knots,
const Standard_Integer  Dimension,
Standard_Real Poles,
const Standard_Integer  Depth,
const Standard_Integer  Length 
)
static

Performs the Boor Algorithm at parameter with the given <Degree> and the array of <Knots> on the poles <Poles> of dimension <Dimension>. The schema is computed until level <Depth> on a basis of <Length+1> poles.

  • Knots is an array of reals of length :

<Length> + <Degree>

  • Poles is an array of reals of length :

(2 * <Length> + 1) * <Dimension>

The poles values must be set in the array at the positions.

0..Dimension,

2 * Dimension .. 3 * Dimension

4 * Dimension .. 5 * Dimension

...

The results are found in the array poles depending on the Depth. (See the method GetPole).

◆ BuildBoor()

static void BSplCLib::BuildBoor ( const Standard_Integer  Index,
const Standard_Integer  Length,
const Standard_Integer  Dimension,
const TColStd_Array1OfReal Poles,
Standard_Real LP 
)
static

Copy in <LP> poles for <Dimension> Boor scheme. Starting from <Index> * <Dimension>, copy <Length+1> poles.

◆ BuildBSpMatrix()

static Standard_Integer BSplCLib::BuildBSpMatrix ( const TColStd_Array1OfReal Parameters,
const TColStd_Array1OfInteger OrderArray,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  Degree,
math_Matrix Matrix,
Standard_Integer UpperBandWidth,
Standard_Integer LowerBandWidth 
)
static

This Builds a fully blown Matrix of (ni) Bi (tj)

with i and j within 1..Order + NumPoles The integer ni is the ith slot of the array OrderArray, tj is the jth slot of the array Parameters

◆ BuildCache() [1/4]

static void BSplCLib::BuildCache ( const Standard_Real  theParameter,
const Standard_Real  theSpanDomain,
const Standard_Boolean  thePeriodicFlag,
const Standard_Integer  theDegree,
const Standard_Integer  theSpanIndex,
const TColStd_Array1OfReal theFlatKnots,
const TColgp_Array1OfPnt thePoles,
const TColStd_Array1OfReal theWeights,
TColStd_Array2OfReal theCacheArray 
)
static

Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. Structure of result optimized for BSplCLib_Cache.

◆ BuildCache() [2/4]

static void BSplCLib::BuildCache ( const Standard_Real  theParameter,
const Standard_Real  theSpanDomain,
const Standard_Boolean  thePeriodicFlag,
const Standard_Integer  theDegree,
const Standard_Integer  theSpanIndex,
const TColStd_Array1OfReal theFlatKnots,
const TColgp_Array1OfPnt2d thePoles,
const TColStd_Array1OfReal theWeights,
TColStd_Array2OfReal theCacheArray 
)
static

Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. Structure of result optimized for BSplCLib_Cache.

◆ BuildCache() [3/4]

static void BSplCLib::BuildCache ( const Standard_Real  U,
const Standard_Real  InverseOfSpanDomain,
const Standard_Boolean  PeriodicFlag,
const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
TColgp_Array1OfPnt CachePoles,
TColStd_Array1OfReal CacheWeights 
)
static

Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles.

◆ BuildCache() [4/4]

static void BSplCLib::BuildCache ( const Standard_Real  U,
const Standard_Real  InverseOfSpanDomain,
const Standard_Boolean  PeriodicFlag,
const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
TColgp_Array1OfPnt2d CachePoles,
TColStd_Array1OfReal CacheWeights 
)
static

Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles.

◆ BuildEval() [1/3]

static void BSplCLib::BuildEval ( const Standard_Integer  Degree,
const Standard_Integer  Index,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
Standard_Real LP 
)
static

◆ BuildEval() [2/3]

static void BSplCLib::BuildEval ( const Standard_Integer  Degree,
const Standard_Integer  Index,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
Standard_Real LP 
)
static

Copy in <LP> the poles and weights for the Eval scheme. starting from Poles(Poles.Lower()+Index)

◆ BuildEval() [3/3]

static void BSplCLib::BuildEval ( const Standard_Integer  Degree,
const Standard_Integer  Index,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal Weights,
Standard_Real LP 
)
static

◆ BuildKnots()

static void BSplCLib::BuildKnots ( const Standard_Integer  Degree,
const Standard_Integer  Index,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
Standard_Real LK 
)
static

Stores in LK the useful knots for the BoorSchem on the span Knots(Index) - Knots(Index+1)

◆ BuildSchoenbergPoints()

static void BSplCLib::BuildSchoenbergPoints ( const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
TColStd_Array1OfReal Parameters 
)
static

builds the Schoenberg points from the flat knot used to interpolate a BSpline since the BSpline matrix is invertible.

◆ CacheD0() [1/2]

static void BSplCLib::CacheD0 ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Real  CacheParameter,
const Standard_Real  SpanLenght,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point 
)
static

Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects.

◆ CacheD0() [2/2]

static void BSplCLib::CacheD0 ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Real  CacheParameter,
const Standard_Real  SpanLenght,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point 
)
static

Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point.

◆ CacheD1() [1/2]

static void BSplCLib::CacheD1 ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Real  CacheParameter,
const Standard_Real  SpanLenght,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point,
gp_Vec Vec 
)
static

Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects.

◆ CacheD1() [2/2]

static void BSplCLib::CacheD1 ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Real  CacheParameter,
const Standard_Real  SpanLenght,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point,
gp_Vec2d Vec 
)
static

Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point.

◆ CacheD2() [1/2]

static void BSplCLib::CacheD2 ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Real  CacheParameter,
const Standard_Real  SpanLenght,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point,
gp_Vec Vec1,
gp_Vec Vec2 
)
static

Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects.

◆ CacheD2() [2/2]

static void BSplCLib::CacheD2 ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Real  CacheParameter,
const Standard_Real  SpanLenght,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point,
gp_Vec2d Vec1,
gp_Vec2d Vec2 
)
static

Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point.

◆ CacheD3() [1/2]

static void BSplCLib::CacheD3 ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Real  CacheParameter,
const Standard_Real  SpanLenght,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point,
gp_Vec Vec1,
gp_Vec Vec2,
gp_Vec Vec3 
)
static

Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects.

◆ CacheD3() [2/2]

static void BSplCLib::CacheD3 ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Real  CacheParameter,
const Standard_Real  SpanLenght,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point,
gp_Vec2d Vec1,
gp_Vec2d Vec2,
gp_Vec2d Vec3 
)
static

Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point.

◆ CoefsD0() [1/2]

static void BSplCLib::CoefsD0 ( const Standard_Real  U,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point 
)
static

Calls CacheD0 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!

◆ CoefsD0() [2/2]

static void BSplCLib::CoefsD0 ( const Standard_Real  U,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point 
)
static

Calls CacheD0 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!

◆ CoefsD1() [1/2]

static void BSplCLib::CoefsD1 ( const Standard_Real  U,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point,
gp_Vec Vec 
)
static

Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!

◆ CoefsD1() [2/2]

static void BSplCLib::CoefsD1 ( const Standard_Real  U,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point,
gp_Vec2d Vec 
)
static

Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!

◆ CoefsD2() [1/2]

static void BSplCLib::CoefsD2 ( const Standard_Real  U,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point,
gp_Vec Vec1,
gp_Vec Vec2 
)
static

Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!

◆ CoefsD2() [2/2]

static void BSplCLib::CoefsD2 ( const Standard_Real  U,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point,
gp_Vec2d Vec1,
gp_Vec2d Vec2 
)
static

Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!

◆ CoefsD3() [1/2]

static void BSplCLib::CoefsD3 ( const Standard_Real  U,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point,
gp_Vec Vec1,
gp_Vec Vec2,
gp_Vec Vec3 
)
static

Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!

◆ CoefsD3() [2/2]

static void BSplCLib::CoefsD3 ( const Standard_Real  U,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point,
gp_Vec2d Vec1,
gp_Vec2d Vec2,
gp_Vec2d Vec3 
)
static

Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!

◆ D0() [1/5]

static void BSplCLib::D0 ( const Standard_Real  U,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Pnt P 
)
static

◆ D0() [2/5]

static void BSplCLib::D0 ( const Standard_Real  U,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
Standard_Real P 
)
static

◆ D0() [3/5]

static void BSplCLib::D0 ( const Standard_Real  U,
const Standard_Integer  UIndex,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Pnt2d P 
)
static

◆ D0() [4/5]

static void BSplCLib::D0 ( const Standard_Real  U,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt P 
)
static

◆ D0() [5/5]

static void BSplCLib::D0 ( const Standard_Real  U,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d P 
)
static

◆ D1() [1/5]

static void BSplCLib::D1 ( const Standard_Real  U,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Pnt P,
gp_Vec V 
)
static

◆ D1() [2/5]

static void BSplCLib::D1 ( const Standard_Real  U,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
Standard_Real P,
Standard_Real V 
)
static

◆ D1() [3/5]

static void BSplCLib::D1 ( const Standard_Real  U,
const Standard_Integer  UIndex,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Pnt2d P,
gp_Vec2d V 
)
static

◆ D1() [4/5]

static void BSplCLib::D1 ( const Standard_Real  U,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt P,
gp_Vec V 
)
static

◆ D1() [5/5]

static void BSplCLib::D1 ( const Standard_Real  U,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d P,
gp_Vec2d V 
)
static

◆ D2() [1/5]

static void BSplCLib::D2 ( const Standard_Real  U,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Pnt P,
gp_Vec V1,
gp_Vec V2 
)
static

◆ D2() [2/5]

static void BSplCLib::D2 ( const Standard_Real  U,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
Standard_Real P,
Standard_Real V1,
Standard_Real V2 
)
static

◆ D2() [3/5]

static void BSplCLib::D2 ( const Standard_Real  U,
const Standard_Integer  UIndex,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Pnt2d P,
gp_Vec2d V1,
gp_Vec2d V2 
)
static

◆ D2() [4/5]

static void BSplCLib::D2 ( const Standard_Real  U,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt P,
gp_Vec V1,
gp_Vec V2 
)
static

◆ D2() [5/5]

static void BSplCLib::D2 ( const Standard_Real  U,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d P,
gp_Vec2d V1,
gp_Vec2d V2 
)
static

◆ D3() [1/5]

static void BSplCLib::D3 ( const Standard_Real  U,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Pnt P,
gp_Vec V1,
gp_Vec V2,
gp_Vec V3 
)
static

◆ D3() [2/5]

static void BSplCLib::D3 ( const Standard_Real  U,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
Standard_Real P,
Standard_Real V1,
Standard_Real V2,
Standard_Real V3 
)
static

◆ D3() [3/5]

static void BSplCLib::D3 ( const Standard_Real  U,
const Standard_Integer  UIndex,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Pnt2d P,
gp_Vec2d V1,
gp_Vec2d V2,
gp_Vec2d V3 
)
static

◆ D3() [4/5]

static void BSplCLib::D3 ( const Standard_Real  U,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt P,
gp_Vec V1,
gp_Vec V2,
gp_Vec V3 
)
static

◆ D3() [5/5]

static void BSplCLib::D3 ( const Standard_Real  U,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d P,
gp_Vec2d V1,
gp_Vec2d V2,
gp_Vec2d V3 
)
static

◆ Derivative()

static void BSplCLib::Derivative ( const Standard_Integer  Degree,
Standard_Real Knots,
const Standard_Integer  Dimension,
const Standard_Integer  Length,
const Standard_Integer  Order,
Standard_Real Poles 
)
static

Computes the poles of the BSpline giving the derivatives of order <Order>.

The formula for the first order is

Pole(i) = Degree * (Pole(i+1) - Pole(i)) / (Knots(i+Degree+1) - Knots(i+1))

This formula is repeated (Degree is decremented at each step).

◆ DN() [1/5]

static void BSplCLib::DN ( const Standard_Real  U,
const Standard_Integer  N,
const Standard_Integer  Index,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Vec VN 
)
static

◆ DN() [2/5]

◆ DN() [3/5]

static void BSplCLib::DN ( const Standard_Real  U,
const Standard_Integer  N,
const Standard_Integer  UIndex,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
gp_Vec2d V 
)
static

◆ DN() [4/5]

static void BSplCLib::DN ( const Standard_Real  U,
const Standard_Integer  N,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt P,
gp_Vec VN 
)
static

◆ DN() [5/5]

static void BSplCLib::DN ( const Standard_Real  U,
const Standard_Integer  N,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d P,
gp_Vec2d VN 
)
static

The above functions compute values and derivatives in the following situations :

  • 3D, 2D and 1D
  • Rational or not Rational.
  • Knots and multiplicities or "flat knots" without multiplicities.
  • The <Index> is the localization of the parameter in the knot sequence. If <Index> is out of range the correct value will be searched.

VERY IMPORTANT!!! USE BSplCLib::NoWeights() as Weights argument for non rational curves computations.

◆ Eval() [1/5]

static void BSplCLib::Eval ( const Standard_Real  U,
const Standard_Boolean  PeriodicFlag,
const Standard_Boolean  HomogeneousFlag,
Standard_Integer ExtrapMode,
const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt Point,
Standard_Real Weight 
)
static

Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point.

◆ Eval() [2/5]

static void BSplCLib::Eval ( const Standard_Real  U,
const Standard_Boolean  PeriodicFlag,
const Standard_Boolean  HomogeneousFlag,
Standard_Integer ExtrapMode,
const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
gp_Pnt2d Point,
Standard_Real Weight 
)
static

Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point.

◆ Eval() [3/5]

static void BSplCLib::Eval ( const Standard_Real  U,
const Standard_Boolean  PeriodicFlag,
const Standard_Integer  DerivativeRequest,
Standard_Integer ExtrapMode,
const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  ArrayDimension,
Standard_Real Poles,
Standard_Real Result 
)
static

Perform the De Boor algorithm to evaluate a point at parameter , with <Degree> and <Dimension>.

Poles is an array of Reals of size

<Dimension> * <Degree>+1

Containing the poles. At the end <Poles> contains the current point. Poles Contain all the poles of the BsplineCurve, Knots also Contains all the knots of the BsplineCurve. ExtrapMode has two slots [0] = Degree used to extrapolate before the first knot [1] = Degre used to extrapolate after the last knot has to be between 1 and Degree

◆ Eval() [4/5]

static void BSplCLib::Eval ( const Standard_Real  U,
const Standard_Boolean  PeriodicFlag,
const Standard_Integer  DerivativeRequest,
Standard_Integer ExtrapMode,
const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  ArrayDimension,
Standard_Real Poles,
Standard_Real Weights,
Standard_Real PolesResult,
Standard_Real WeightsResult 
)
static

Perform the De Boor algorithm to evaluate a point at parameter , with <Degree> and <Dimension>. Evaluates by multiplying the Poles by the Weights and gives the homogeneous result in PolesResult that is the results of the evaluation of the numerator once it has been multiplied by the weights and in WeightsResult one has the result of the evaluation of the denominator.

Warning: <PolesResult> and <WeightsResult> must be dimensionned properly.

◆ Eval() [5/5]

static void BSplCLib::Eval ( const Standard_Real  U,
const Standard_Integer  Degree,
Standard_Real Knots,
const Standard_Integer  Dimension,
Standard_Real Poles 
)
static

Perform the Boor algorithm to evaluate a point at parameter , with <Degree> and <Dimension>.

Poles is an array of Reals of size

<Dimension> * <Degree>+1

Containing the poles. At the end <Poles> contains the current point.

◆ EvalBsplineBasis()

static Standard_Integer BSplCLib::EvalBsplineBasis ( const Standard_Integer  DerivativeOrder,
const Standard_Integer  Order,
const TColStd_Array1OfReal FlatKnots,
const Standard_Real  Parameter,
Standard_Integer FirstNonZeroBsplineIndex,
math_Matrix BsplineBasis,
const Standard_Boolean  isPeriodic = Standard_False 
)
static

This evaluates the Bspline Basis at a given parameter Parameter up to the requested DerivativeOrder and store the result in the array BsplineBasis in the following fashion BSplineBasis(1,1) = value of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex BsplineBasis(1,2) = value of second non vanishing Bspline function which has Index FirstNonZeroBsplineIndex + 1 BsplineBasis(1,n) = value of second non vanishing non vanishing Bspline function which has Index FirstNonZeroBsplineIndex + n (n <= Order) BSplineBasis(2,1) = value of derivative of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex BSplineBasis(N,1) = value of Nth derivative of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex if N <= DerivativeOrder + 1.

◆ FactorBandedMatrix()

static Standard_Integer BSplCLib::FactorBandedMatrix ( math_Matrix Matrix,
const Standard_Integer  UpperBandWidth,
const Standard_Integer  LowerBandWidth,
Standard_Integer PivotIndexProblem 
)
static

this factors the Banded Matrix in the LU form with a Banded storage of components of the L matrix WARNING : do not use if the Matrix is totally positive (It is the case for Bspline matrices build as above with parameters being the Schoenberg points

◆ FirstUKnotIndex()

static Standard_Integer BSplCLib::FirstUKnotIndex ( const Standard_Integer  Degree,
const TColStd_Array1OfInteger Mults 
)
static

Computes the index of the knots value which gives the start point of the curve.

◆ FlatBezierKnots()

static const Standard_Real & BSplCLib::FlatBezierKnots ( const Standard_Integer  Degree)
static

Returns pointer to statically allocated array representing flat knots for bezier curve of the specified degree. Raises OutOfRange if Degree > MaxDegree()

◆ FlatIndex()

static Standard_Integer BSplCLib::FlatIndex ( const Standard_Integer  Degree,
const Standard_Integer  Index,
const TColStd_Array1OfInteger Mults,
const Standard_Boolean  Periodic 
)
static

Computes the index of the flats knots sequence corresponding to <Index> in the knots sequence which multiplicities are <Mults>.

◆ FunctionMultiply() [1/4]

static void BSplCLib::FunctionMultiply ( const BSplCLib_EvaluatorFunction Function,
const Standard_Integer  BSplineDegree,
const TColStd_Array1OfReal BSplineFlatKnots,
const Standard_Integer  PolesDimension,
Standard_Real Poles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  NewDegree,
Standard_Real NewPoles,
Standard_Integer theStatus 
)
static

this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions

  1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t)

◆ FunctionMultiply() [2/4]

static void BSplCLib::FunctionMultiply ( const BSplCLib_EvaluatorFunction Function,
const Standard_Integer  BSplineDegree,
const TColStd_Array1OfReal BSplineFlatKnots,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  NewDegree,
TColgp_Array1OfPnt NewPoles,
Standard_Integer theStatus 
)
static

this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions

  1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t)

◆ FunctionMultiply() [3/4]

static void BSplCLib::FunctionMultiply ( const BSplCLib_EvaluatorFunction Function,
const Standard_Integer  BSplineDegree,
const TColStd_Array1OfReal BSplineFlatKnots,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  NewDegree,
TColgp_Array1OfPnt2d NewPoles,
Standard_Integer theStatus 
)
static

this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions

  1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t)

◆ FunctionMultiply() [4/4]

static void BSplCLib::FunctionMultiply ( const BSplCLib_EvaluatorFunction Function,
const Standard_Integer  BSplineDegree,
const TColStd_Array1OfReal BSplineFlatKnots,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  NewDegree,
TColStd_Array1OfReal NewPoles,
Standard_Integer theStatus 
)
static

this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions

  1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t)

◆ FunctionReparameterise() [1/4]

static void BSplCLib::FunctionReparameterise ( const BSplCLib_EvaluatorFunction Function,
const Standard_Integer  BSplineDegree,
const TColStd_Array1OfReal BSplineFlatKnots,
const Standard_Integer  PolesDimension,
Standard_Real Poles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  NewDegree,
Standard_Real NewPoles,
Standard_Integer theStatus 
)
static

This function will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following:

  1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots
  2. a(t) defines a differentiable isomorphism between the range of FlatKnots to the range of BSplineFlatKnots which is the same as the range of F(t)

Warning: it is the caller's responsibility to insure that conditions

  1. and 2. above are satisfied : no check whatsoever is made in this method

theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of F(a(t))

◆ FunctionReparameterise() [2/4]

static void BSplCLib::FunctionReparameterise ( const BSplCLib_EvaluatorFunction Function,
const Standard_Integer  BSplineDegree,
const TColStd_Array1OfReal BSplineFlatKnots,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  NewDegree,
TColgp_Array1OfPnt NewPoles,
Standard_Integer theStatus 
)
static

this will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following : 1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots

  1. a(t) defines a differentiable isomorphism between the range of FlatKnots to the range of BSplineFlatKnots which is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions
  1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of F(a(t))

◆ FunctionReparameterise() [3/4]

static void BSplCLib::FunctionReparameterise ( const BSplCLib_EvaluatorFunction Function,
const Standard_Integer  BSplineDegree,
const TColStd_Array1OfReal BSplineFlatKnots,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  NewDegree,
TColgp_Array1OfPnt2d NewPoles,
Standard_Integer theStatus 
)
static

this will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following : 1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots

  1. a(t) defines a differentiable isomorphism between the range of FlatKnots to the range of BSplineFlatKnots which is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions
  1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of F(a(t))

◆ FunctionReparameterise() [4/4]

static void BSplCLib::FunctionReparameterise ( const BSplCLib_EvaluatorFunction Function,
const Standard_Integer  BSplineDegree,
const TColStd_Array1OfReal BSplineFlatKnots,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  NewDegree,
TColStd_Array1OfReal NewPoles,
Standard_Integer theStatus 
)
static

This function will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following:

  1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots
  2. a(t) defines a differentiable isomorphism between the range of FlatKnots to the range of BSplineFlatKnots which is the same as the range of F(t)

Warning: it is the caller's responsibility to insure that conditions

  1. and 2. above are satisfied : no check whatsoever is made in this method

theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of F(a(t))

◆ GetPole()

static void BSplCLib::GetPole ( const Standard_Integer  Index,
const Standard_Integer  Length,
const Standard_Integer  Depth,
const Standard_Integer  Dimension,
Standard_Real LocPoles,
Standard_Integer Position,
TColStd_Array1OfReal Pole 
)
static

Copy the pole at position <Index> in the Boor scheme of dimension <Dimension> to <Position> in the array <Pole>. <Position> is updated.

◆ Hunt()

static void BSplCLib::Hunt ( const TColStd_Array1OfReal theArray,
const Standard_Real  theX,
Standard_Integer theXPos 
)
static

This routine searches the position of the real value theX in the monotonically increasing set of real values theArray using bisection algorithm.

If the given value is out of range or array values, algorithm returns either theArray.Lower()-1 or theArray.Upper()+1 depending on theX position in the ordered set.

This routine is used to locate a knot value in a set of knots.

◆ IncreaseDegree() [1/5]

static void BSplCLib::IncreaseDegree ( const Standard_Integer  Degree,
const Standard_Integer  NewDegree,
const Standard_Boolean  Periodic,
const Standard_Integer  Dimension,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColStd_Array1OfReal NewPoles,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults 
)
static

◆ IncreaseDegree() [2/5]

static void BSplCLib::IncreaseDegree ( const Standard_Integer  Degree,
const Standard_Integer  NewDegree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColgp_Array1OfPnt NewPoles,
TColStd_Array1OfReal NewWeights,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults 
)
static

◆ IncreaseDegree() [3/5]

static void BSplCLib::IncreaseDegree ( const Standard_Integer  Degree,
const Standard_Integer  NewDegree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColgp_Array1OfPnt2d NewPoles,
TColStd_Array1OfReal NewWeights,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults 
)
static

◆ IncreaseDegree() [4/5]

static void BSplCLib::IncreaseDegree ( const Standard_Integer  NewDegree,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
TColgp_Array1OfPnt NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

◆ IncreaseDegree() [5/5]

static void BSplCLib::IncreaseDegree ( const Standard_Integer  theNewDegree,
const TColgp_Array1OfPnt2d thePoles,
const TColStd_Array1OfReal theWeights,
TColgp_Array1OfPnt2d theNewPoles,
TColStd_Array1OfReal theNewWeights 
)
static

Increase the degree of a bspline (or bezier) curve of dimension theDimension form theDegree to theNewDegree.

The number of poles in the new curve is:

Poles.Length() + (NewDegree - Degree) * Number of spans
Definition NCollection_UBTree.hxx:64

Where the number of spans is:

LastUKnotIndex(Mults) - FirstUKnotIndex(Mults) + 1
static Standard_Integer LastUKnotIndex(const Standard_Integer Degree, const TColStd_Array1OfInteger &Mults)
Computes the index of the knots value which gives the end point of the curve.
static Standard_Integer FirstUKnotIndex(const Standard_Integer Degree, const TColStd_Array1OfInteger &Mults)
Computes the index of the knots value which gives the start point of the curve.

for a non-periodic curve, and

Knots.Length() - 1
static void Knots(const TColStd_Array1OfReal &KnotSeq, TColStd_Array1OfReal &Knots, TColStd_Array1OfInteger &Mults, const Standard_Boolean Periodic=Standard_False)
Computes the sequence of knots Knots without repetition of the knots of multiplicity greater than 1.

for a periodic curve.

The multiplicities of all knots are increased by the degree elevation.

The new knots are usually the same knots with the exception of a non-periodic curve with the first and last multiplicity not equal to Degree+1 where knots are removed form the start and the bottom until the sum of the multiplicities is equal to NewDegree+1 at the knots corresponding to the first and last parameters of the curve.

Example: Suppose a curve of degree 3 starting with following knots and multiplicities:

knot : 0. 1. 2.
mult : 1 2 1

The FirstUKnot is 2.0 because the sum of multiplicities is

Degree+1 : 1 + 2 + 1 = 4 = 3 + 1

i.e. the first parameter of the curve is 2.0 and will still be 2.0 after degree elevation. Let raise this curve to degree 4. The multiplicities are increased by 2.

They become 2 3 2. But we need a sum of multiplicities of 5 at knot 2. So the first knot is removed and the new knots are:

knot : 1. 2.
mult : 3 2

The multipicity of the first knot may also be reduced if the sum is still to big.

In the most common situations (periodic curve or curve with first and last multiplicities equals to Degree+1) the knots are knot changes.

The method IncreaseDegreeCountKnots can be used to compute the new number of knots.

◆ IncreaseDegreeCountKnots()

static Standard_Integer BSplCLib::IncreaseDegreeCountKnots ( const Standard_Integer  Degree,
const Standard_Integer  NewDegree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfInteger Mults 
)
static

Returns the number of knots of a curve with multiplicities <Mults> after elevating the degree from <Degree> to <NewDegree>. See the IncreaseDegree method for more comments.

◆ InsertKnot() [1/2]

static void BSplCLib::InsertKnot ( const Standard_Integer  UIndex,
const Standard_Real  U,
const Standard_Integer  UMult,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColgp_Array1OfPnt NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

◆ InsertKnot() [2/2]

static void BSplCLib::InsertKnot ( const Standard_Integer  UIndex,
const Standard_Real  U,
const Standard_Integer  UMult,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColgp_Array1OfPnt2d NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

Insert a new knot U of multiplicity UMult in the knot sequence.

The location of the new Knot should be given as an input data. UIndex locates the new knot U in the knot sequence and Knots (UIndex) < U < Knots (UIndex + 1).

The new control points corresponding to this insertion are returned. Knots and Mults are not updated.

◆ InsertKnots() [1/3]

static void BSplCLib::InsertKnots ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const Standard_Integer  Dimension,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const TColStd_Array1OfReal AddKnots,
const TColStd_Array1OfInteger AddMults,
TColStd_Array1OfReal NewPoles,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
const Standard_Real  Epsilon,
const Standard_Boolean  Add = Standard_True 
)
static

◆ InsertKnots() [2/3]

static void BSplCLib::InsertKnots ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const TColStd_Array1OfReal AddKnots,
const TColStd_Array1OfInteger AddMults,
TColgp_Array1OfPnt NewPoles,
TColStd_Array1OfReal NewWeights,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
const Standard_Real  Epsilon,
const Standard_Boolean  Add = Standard_True 
)
static

◆ InsertKnots() [3/3]

static void BSplCLib::InsertKnots ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const TColStd_Array1OfReal AddKnots,
const TColStd_Array1OfInteger AddMults,
TColgp_Array1OfPnt2d NewPoles,
TColStd_Array1OfReal NewWeights,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
const Standard_Real  Epsilon,
const Standard_Boolean  Add = Standard_True 
)
static

Insert a sequence of knots <AddKnots> with multiplicities <AddMults>. <AddKnots> must be a non decreasing sequence and verifies :

Knots(Knots.Lower()) <= AddKnots(AddKnots.Lower()) Knots(Knots.Upper()) >= AddKnots(AddKnots.Upper())

The NewPoles and NewWeights arrays must have a length : Poles.Length() + Sum(AddMults())

When a knot to insert is identic to an existing knot the multiplicities are added.

Epsilon is used to test knots for equality.

When AddMult is negative or null the knot is not inserted. No multiplicity will becomes higher than the degree.

The new Knots and Multiplicities are copied in <NewKnots> and <NewMults>.

All the New arrays should be correctly dimensioned.

When all the new knots are existing knots, i.e. only the multiplicities will change it is safe to use the same arrays as input and output.

◆ Interpolate() [1/6]

static void BSplCLib::Interpolate ( const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColStd_Array1OfReal Parameters,
const TColStd_Array1OfInteger ContactOrderArray,
const Standard_Integer  ArrayDimension,
Standard_Real Poles,
Standard_Integer InversionProblem 
)
static

Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray The length of FlatKnots is Degree + L + 1 The PolesArray is an seen as an Array[1..N][1..ArrayDimension] with N = tge length of the parameters array Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation or interpolation at Scheonberg points the method will work The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot.

◆ Interpolate() [2/6]

static void BSplCLib::Interpolate ( const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColStd_Array1OfReal Parameters,
const TColStd_Array1OfInteger ContactOrderArray,
const Standard_Integer  ArrayDimension,
Standard_Real Poles,
Standard_Real Weights,
Standard_Integer InversionProblem 
)
static

◆ Interpolate() [3/6]

static void BSplCLib::Interpolate ( const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColStd_Array1OfReal Parameters,
const TColStd_Array1OfInteger ContactOrderArray,
TColgp_Array1OfPnt Poles,
Standard_Integer InversionProblem 
)
static

Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation or interpolation at Scheonberg points the method will work The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot.

◆ Interpolate() [4/6]

static void BSplCLib::Interpolate ( const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColStd_Array1OfReal Parameters,
const TColStd_Array1OfInteger ContactOrderArray,
TColgp_Array1OfPnt Poles,
TColStd_Array1OfReal Weights,
Standard_Integer InversionProblem 
)
static

Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot.

◆ Interpolate() [5/6]

static void BSplCLib::Interpolate ( const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColStd_Array1OfReal Parameters,
const TColStd_Array1OfInteger ContactOrderArray,
TColgp_Array1OfPnt2d Poles,
Standard_Integer InversionProblem 
)
static

Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem w ll report 0 if there was no problem else it will give the index of the faulty pivot.

◆ Interpolate() [6/6]

static void BSplCLib::Interpolate ( const Standard_Integer  Degree,
const TColStd_Array1OfReal FlatKnots,
const TColStd_Array1OfReal Parameters,
const TColStd_Array1OfInteger ContactOrderArray,
TColgp_Array1OfPnt2d Poles,
TColStd_Array1OfReal Weights,
Standard_Integer InversionProblem 
)
static

Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem w ll report 0 if there was no problem else it will give the i.

◆ Intervals()

static Standard_Integer BSplCLib::Intervals ( const TColStd_Array1OfReal theKnots,
const TColStd_Array1OfInteger theMults,
Standard_Integer  theDegree,
Standard_Boolean  isPeriodic,
Standard_Integer  theContinuity,
Standard_Real  theFirst,
Standard_Real  theLast,
Standard_Real  theTolerance,
TColStd_Array1OfReal theIntervals 
)
static

Splits the given range to BSpline intervals of given continuity.

Parameters
[in]theKnotsthe knots of BSpline
[in]theMultsthe knots' multiplicities
[in]theDegreethe degree of BSpline
[in]isPeriodicthe periodicity of BSpline
[in]theContinuitythe target interval's continuity
[in]theFirstthe begin of the target range
[in]theLastthe end of the target range
[in]theTolerancethe tolerance
[in,out]theIntervalsthe array to store intervals if isn't nullptr
Returns
the number of intervals

◆ IsRational()

static Standard_Boolean BSplCLib::IsRational ( const TColStd_Array1OfReal Weights,
const Standard_Integer  I1,
const Standard_Integer  I2,
const Standard_Real  Epsilon = 0.0 
)
static

Returns False if all the weights of the array <Weights> between I1 an I2 are identic. Epsilon is used for comparing weights. If Epsilon is 0. the Epsilon of the first weight is used.

◆ KnotAnalysis()

static void BSplCLib::KnotAnalysis ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal CKnots,
const TColStd_Array1OfInteger CMults,
GeomAbs_BSplKnotDistribution KnotForm,
Standard_Integer MaxKnotMult 
)
static

Analyzes the array of knots. Returns the form and the maximum knot multiplicity.

◆ KnotForm()

static BSplCLib_KnotDistribution BSplCLib::KnotForm ( const TColStd_Array1OfReal Knots,
const Standard_Integer  FromK1,
const Standard_Integer  ToK2 
)
static

Analyses if the knots distribution is "Uniform" or "NonUniform" between the knot FromK1 and the knot ToK2. There is no repetition of knot in the knots'sequence <Knots>.

◆ Knots()

static void BSplCLib::Knots ( const TColStd_Array1OfReal KnotSeq,
TColStd_Array1OfReal Knots,
TColStd_Array1OfInteger Mults,
const Standard_Boolean  Periodic = Standard_False 
)
static

Computes the sequence of knots Knots without repetition of the knots of multiplicity greater than 1.

Length of <Knots> and <Mults> must be KnotsLength(KnotSequence,Periodic)

◆ KnotSequence() [1/2]

static void BSplCLib::KnotSequence ( const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
TColStd_Array1OfReal KnotSeq 
)
static

Computes the sequence of knots KnotSeq with repetition of the knots of multiplicity greater than 1.

Length of KnotSeq must be KnotSequenceLength(Mults,Degree,Periodic)

◆ KnotSequence() [2/2]

static void BSplCLib::KnotSequence ( const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColStd_Array1OfReal KnotSeq,
const Standard_Boolean  Periodic = Standard_False 
)
static

◆ KnotSequenceLength()

static Standard_Integer BSplCLib::KnotSequenceLength ( const TColStd_Array1OfInteger Mults,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic 
)
static

Returns the length of the sequence of knots with repetition.

Periodic :

Sum(Mults(i), i = Mults.Lower(); i <= Mults.Upper());

Non Periodic :

Sum(Mults(i); i = Mults.Lower(); i < Mults.Upper())

  • 2 * Degree

◆ KnotsLength()

static Standard_Integer BSplCLib::KnotsLength ( const TColStd_Array1OfReal KnotSeq,
const Standard_Boolean  Periodic = Standard_False 
)
static

Returns the length of the sequence of knots (and Mults) without repetition.

◆ LastUKnotIndex()

static Standard_Integer BSplCLib::LastUKnotIndex ( const Standard_Integer  Degree,
const TColStd_Array1OfInteger Mults 
)
static

Computes the index of the knots value which gives the end point of the curve.

◆ LocateParameter() [1/3]

static void BSplCLib::LocateParameter ( const Standard_Integer  Degree,
const TColStd_Array1OfReal Knots,
const Standard_Real  U,
const Standard_Boolean  IsPeriodic,
const Standard_Integer  FromK1,
const Standard_Integer  ToK2,
Standard_Integer KnotIndex,
Standard_Real NewU 
)
static

Locates the parametric value U in the knots sequence between the knot K1 and the knot K2. The value return in Index verifies.

Knots(Index) <= U < Knots(Index + 1) if U <= Knots (K1) then Index = K1 if U >= Knots (K2) then Index = K2 - 1

If Periodic is True U may be modified to fit in the range Knots(K1), Knots(K2). In any case the correct value is returned in NewU.

Warnings :Index is used as input data to initialize the searching function. Warning: Knots have to be "flat"

◆ LocateParameter() [2/3]

static void BSplCLib::LocateParameter ( const Standard_Integer  Degree,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const Standard_Real  U,
const Standard_Boolean  IsPeriodic,
const Standard_Integer  FromK1,
const Standard_Integer  ToK2,
Standard_Integer KnotIndex,
Standard_Real NewU 
)
static

Locates the parametric value U in the knots sequence between the knot K1 and the knot K2. The value return in Index verifies.

Knots(Index) <= U < Knots(Index + 1) if U <= Knots (K1) then Index = K1 if U >= Knots (K2) then Index = K2 - 1

If Periodic is True U may be modified to fit in the range Knots(K1), Knots(K2). In any case the correct value is returned in NewU.

Warnings :Index is used as input data to initialize the searching function. Warning: Knots have to be "withe repetitions"

◆ LocateParameter() [3/3]

static void BSplCLib::LocateParameter ( const Standard_Integer  Degree,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const Standard_Real  U,
const Standard_Boolean  Periodic,
Standard_Integer Index,
Standard_Real NewU 
)
static

◆ MaxDegree()

static Standard_Integer BSplCLib::MaxDegree ( )
static

returns the degree maxima for a BSplineCurve.

◆ MaxKnotMult()

static Standard_Integer BSplCLib::MaxKnotMult ( const TColStd_Array1OfInteger Mults,
const Standard_Integer  K1,
const Standard_Integer  K2 
)
static

Finds the greatest multiplicity in a set of knots between K1 and K2. Mults is the multiplicity associated with each knot value.

◆ MergeBSplineKnots()

static void BSplCLib::MergeBSplineKnots ( const Standard_Real  Tolerance,
const Standard_Real  StartValue,
const Standard_Real  EndValue,
const Standard_Integer  Degree1,
const TColStd_Array1OfReal Knots1,
const TColStd_Array1OfInteger Mults1,
const Standard_Integer  Degree2,
const TColStd_Array1OfReal Knots2,
const TColStd_Array1OfInteger Mults2,
Standard_Integer NumPoles,
Handle< TColStd_HArray1OfReal > &  NewKnots,
Handle< TColStd_HArray1OfInteger > &  NewMults 
)
static

Merges two knot vector by setting the starting and ending values to StartValue and EndValue.

◆ MinKnotMult()

static Standard_Integer BSplCLib::MinKnotMult ( const TColStd_Array1OfInteger Mults,
const Standard_Integer  K1,
const Standard_Integer  K2 
)
static

Finds the lowest multiplicity in a set of knots between K1 and K2. Mults is the multiplicity associated with each knot value.

◆ MovePoint() [1/2]

static void BSplCLib::MovePoint ( const Standard_Real  U,
const gp_Vec Displ,
const Standard_Integer  Index1,
const Standard_Integer  Index2,
const Standard_Integer  Degree,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal FlatKnots,
Standard_Integer FirstIndex,
Standard_Integer LastIndex,
TColgp_Array1OfPnt NewPoles 
)
static

Find the new poles which allows an old point (with a given u as parameter) to reach a new position Index1 and Index2 indicate the range of poles we can move (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side don't enter (1,NbPoles) -> error: rigid move (2, NbPoles-1) -> the ends are enforced (3, NbPoles-2) -> the ends and the tangency are enforced if Problem in BSplineBasis calculation, no change for the curve and FirstIndex, LastIndex = 0.

◆ MovePoint() [2/2]

static void BSplCLib::MovePoint ( const Standard_Real  U,
const gp_Vec2d Displ,
const Standard_Integer  Index1,
const Standard_Integer  Index2,
const Standard_Integer  Degree,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal FlatKnots,
Standard_Integer FirstIndex,
Standard_Integer LastIndex,
TColgp_Array1OfPnt2d NewPoles 
)
static

Find the new poles which allows an old point (with a given u as parameter) to reach a new position Index1 and Index2 indicate the range of poles we can move (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side don't enter (1,NbPoles) -> error: rigid move (2, NbPoles-1) -> the ends are enforced (3, NbPoles-2) -> the ends and the tangency are enforced if Problem in BSplineBasis calculation, no change for the curve and FirstIndex, LastIndex = 0.

◆ MovePointAndTangent() [1/3]

static void BSplCLib::MovePointAndTangent ( const Standard_Real  U,
const gp_Vec Delta,
const gp_Vec DeltaDerivative,
const Standard_Real  Tolerance,
const Standard_Integer  Degree,
const Standard_Integer  StartingCondition,
const Standard_Integer  EndingCondition,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal FlatKnots,
TColgp_Array1OfPnt NewPoles,
Standard_Integer ErrorStatus 
)
static

This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.

◆ MovePointAndTangent() [2/3]

static void BSplCLib::MovePointAndTangent ( const Standard_Real  U,
const gp_Vec2d Delta,
const gp_Vec2d DeltaDerivative,
const Standard_Real  Tolerance,
const Standard_Integer  Degree,
const Standard_Integer  StartingCondition,
const Standard_Integer  EndingCondition,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal FlatKnots,
TColgp_Array1OfPnt2d NewPoles,
Standard_Integer ErrorStatus 
)
static

This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.

◆ MovePointAndTangent() [3/3]

static void BSplCLib::MovePointAndTangent ( const Standard_Real  U,
const Standard_Integer  ArrayDimension,
Standard_Real Delta,
Standard_Real DeltaDerivative,
const Standard_Real  Tolerance,
const Standard_Integer  Degree,
const Standard_Integer  StartingCondition,
const Standard_Integer  EndingCondition,
Standard_Real Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal FlatKnots,
Standard_Real NewPoles,
Standard_Integer ErrorStatus 
)
static

This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.

◆ MultForm()

static BSplCLib_MultDistribution BSplCLib::MultForm ( const TColStd_Array1OfInteger Mults,
const Standard_Integer  FromK1,
const Standard_Integer  ToK2 
)
static

Analyses the distribution of multiplicities between the knot FromK1 and the Knot ToK2.

◆ NbPoles()

static Standard_Integer BSplCLib::NbPoles ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfInteger Mults 
)
static

Returns the number of poles of the curve. Returns 0 if one of the multiplicities is incorrect.

  • Non positive.
  • Greater than Degree, or Degree+1 at the first and last knot of a non periodic curve.
  • The last periodicity on a periodic curve is not equal to the first.

◆ NoMults()

static TColStd_Array1OfInteger * BSplCLib::NoMults ( )
static

Used as argument for a flatknots evaluation.

◆ NoWeights()

static TColStd_Array1OfReal * BSplCLib::NoWeights ( )
static

Used as argument for a non rational curve.

◆ PoleIndex()

static Standard_Integer BSplCLib::PoleIndex ( const Standard_Integer  Degree,
const Standard_Integer  Index,
const Standard_Boolean  Periodic,
const TColStd_Array1OfInteger Mults 
)
static

Return the index of the first Pole to use on the span Mults(Index) - Mults(Index+1). This index must be added to Poles.Lower().

◆ PolesCoefficients() [1/4]

static void BSplCLib::PolesCoefficients ( const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
TColgp_Array1OfPnt CachePoles,
TColStd_Array1OfReal CacheWeights 
)
static

Encapsulation of BuildCache to perform the evaluation of the Taylor expansion for beziercurves at parameter 0. Warning: To be used for Beziercurves ONLY!!!

◆ PolesCoefficients() [2/4]

static void BSplCLib::PolesCoefficients ( const TColgp_Array1OfPnt Poles,
TColgp_Array1OfPnt CachePoles 
)
static

◆ PolesCoefficients() [3/4]

static void BSplCLib::PolesCoefficients ( const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
TColgp_Array1OfPnt2d CachePoles,
TColStd_Array1OfReal CacheWeights 
)
static

◆ PolesCoefficients() [4/4]

static void BSplCLib::PolesCoefficients ( const TColgp_Array1OfPnt2d Poles,
TColgp_Array1OfPnt2d CachePoles 
)
static

◆ PrepareInsertKnots()

static Standard_Boolean BSplCLib::PrepareInsertKnots ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const TColStd_Array1OfReal AddKnots,
const TColStd_Array1OfInteger AddMults,
Standard_Integer NbPoles,
Standard_Integer NbKnots,
const Standard_Real  Epsilon,
const Standard_Boolean  Add = Standard_True 
)
static

Returns in <NbPoles, NbKnots> the new number of poles and knots if the sequence of knots <AddKnots, AddMults> is inserted in the sequence <Knots, Mults>.

Epsilon is used to compare knots for equality.

If Add is True the multiplicities on equal knots are added.

If Add is False the max value of the multiplicities is kept.

Return False if : The knew knots are knot increasing. The new knots are not in the range.

◆ PrepareTrimming()

static void BSplCLib::PrepareTrimming ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const Standard_Real  U1,
const Standard_Real  U2,
Standard_Integer NbKnots,
Standard_Integer NbPoles 
)
static

Set in <NbKnots> and <NbPoles> the number of Knots and Poles of the curve resulting from the trimming of the BSplinecurve defined with <degree>, <knots>, <mults>

◆ PrepareUnperiodize()

static void BSplCLib::PrepareUnperiodize ( const Standard_Integer  Degree,
const TColStd_Array1OfInteger Mults,
Standard_Integer NbKnots,
Standard_Integer NbPoles 
)
static

Set in <NbKnots> and <NbPolesToAdd> the number of Knots and Poles of the NotPeriodic Curve identical at the periodic curve with a degree <Degree> , a knots-distribution with Multiplicities <Mults>.

◆ RaiseMultiplicity() [1/2]

static void BSplCLib::RaiseMultiplicity ( const Standard_Integer  KnotIndex,
const Standard_Integer  Mult,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColgp_Array1OfPnt NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

◆ RaiseMultiplicity() [2/2]

static void BSplCLib::RaiseMultiplicity ( const Standard_Integer  KnotIndex,
const Standard_Integer  Mult,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColgp_Array1OfPnt2d NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

Raise the multiplicity of knot to <UMult>.

The new control points are returned. Knots and Mults are not updated.

◆ RemoveKnot() [1/3]

static Standard_Boolean BSplCLib::RemoveKnot ( const Standard_Integer  Index,
const Standard_Integer  Mult,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const Standard_Integer  Dimension,
const TColStd_Array1OfReal Poles,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColStd_Array1OfReal NewPoles,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
const Standard_Real  Tolerance 
)
static

◆ RemoveKnot() [2/3]

static Standard_Boolean BSplCLib::RemoveKnot ( const Standard_Integer  Index,
const Standard_Integer  Mult,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColgp_Array1OfPnt NewPoles,
TColStd_Array1OfReal NewWeights,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
const Standard_Real  Tolerance 
)
static

◆ RemoveKnot() [3/3]

static Standard_Boolean BSplCLib::RemoveKnot ( const Standard_Integer  Index,
const Standard_Integer  Mult,
const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
TColgp_Array1OfPnt2d NewPoles,
TColStd_Array1OfReal NewWeights,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
const Standard_Real  Tolerance 
)
static

Decrement the multiplicity of <Knots(Index)> to <Mult>. If <Mult> is null the knot is removed.

As there are two ways to compute the new poles the midlle will be used as long as the distance is lower than Tolerance.

If a distance is bigger than tolerance the methods returns False and the new arrays are not modified.

A low tolerance can be used to test if the knot can be removed without modifying the curve.

A high tolerance can be used to "smooth" the curve.

◆ Reparametrize()

static void BSplCLib::Reparametrize ( const Standard_Real  U1,
const Standard_Real  U2,
TColStd_Array1OfReal Knots 
)
static

Reparametrizes a B-spline curve to [U1, U2]. The knot values are recomputed such that Knots (Lower) = U1 and Knots (Upper) = U2 but the knot form is not modified. Warnings : In the array Knots the values must be in ascending order. U1 must not be equal to U2 to avoid division by zero.

◆ Resolution() [1/3]

static void BSplCLib::Resolution ( const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const Standard_Integer  NumPoles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  Degree,
const Standard_Real  Tolerance3D,
Standard_Real UTolerance 
)
static

given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D

◆ Resolution() [2/3]

static void BSplCLib::Resolution ( const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const Standard_Integer  NumPoles,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  Degree,
const Standard_Real  Tolerance3D,
Standard_Real UTolerance 
)
static

given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D

◆ Resolution() [3/3]

static void BSplCLib::Resolution ( Standard_Real PolesArray,
const Standard_Integer  ArrayDimension,
const Standard_Integer  NumPoles,
const TColStd_Array1OfReal Weights,
const TColStd_Array1OfReal FlatKnots,
const Standard_Integer  Degree,
const Standard_Real  Tolerance3D,
Standard_Real UTolerance 
)
static

given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D

◆ Reverse() [1/5]

static void BSplCLib::Reverse ( TColgp_Array1OfPnt Poles,
const Standard_Integer  Last 
)
static

Reverses the array of poles. Last is the index of the new first pole. On a non periodic curve last is Poles.Upper(). On a periodic curve last is.

(number of flat knots - degree - 1)

or

(sum of multiplicities(but for the last) + degree

  • 1)

◆ Reverse() [2/5]

static void BSplCLib::Reverse ( TColgp_Array1OfPnt2d Poles,
const Standard_Integer  Last 
)
static

Reverses the array of poles.

◆ Reverse() [3/5]

static void BSplCLib::Reverse ( TColStd_Array1OfInteger Mults)
static

Reverses the array of multiplicities.

◆ Reverse() [4/5]

static void BSplCLib::Reverse ( TColStd_Array1OfReal Knots)
static

Reverses the array knots to become the knots sequence of the reversed curve.

◆ Reverse() [5/5]

static void BSplCLib::Reverse ( TColStd_Array1OfReal Weights,
const Standard_Integer  Last 
)
static

Reverses the array of poles.

◆ SolveBandedSystem() [1/6]

static Standard_Integer BSplCLib::SolveBandedSystem ( const math_Matrix Matrix,
const Standard_Integer  UpperBandWidth,
const Standard_Integer  LowerBandWidth,
const Standard_Boolean  HomogeneousFlag,
TColgp_Array1OfPnt Array,
TColStd_Array1OfReal Weights 
)
static

This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension If HomogeneousFlag == 0 the Poles are multiplied by the Weights upon Entry and once interpolation is carried over the result of the poles are divided by the result of the interpolation of the weights. Otherwise if HomogenousFlag == 1 the Poles and Weigths are treated homogeneously that is that those are interpolated as they are and result is returned without division by the interpolated weigths.

◆ SolveBandedSystem() [2/6]

static Standard_Integer BSplCLib::SolveBandedSystem ( const math_Matrix Matrix,
const Standard_Integer  UpperBandWidth,
const Standard_Integer  LowerBandWidth,
const Standard_Boolean  HomogenousFlag,
const Standard_Integer  ArrayDimension,
Standard_Real Array,
Standard_Real Weights 
)
static

◆ SolveBandedSystem() [3/6]

static Standard_Integer BSplCLib::SolveBandedSystem ( const math_Matrix Matrix,
const Standard_Integer  UpperBandWidth,
const Standard_Integer  LowerBandWidth,
const Standard_Boolean  HomogenousFlag,
TColgp_Array1OfPnt2d Array,
TColStd_Array1OfReal Weights 
)
static

This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension. If HomogeneousFlag == 0 the Poles are multiplied by the Weights upon Entry and once interpolation is carried over the result of the poles are divided by the result of the interpolation of the weights. Otherwise if HomogenousFlag == 1 the Poles and Weigths are treated homogeneously that is that those are interpolated as they are and result is returned without division by the interpolated weigths.

◆ SolveBandedSystem() [4/6]

static Standard_Integer BSplCLib::SolveBandedSystem ( const math_Matrix Matrix,
const Standard_Integer  UpperBandWidth,
const Standard_Integer  LowerBandWidth,
const Standard_Integer  ArrayDimension,
Standard_Real Array 
)
static

This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension.

◆ SolveBandedSystem() [5/6]

static Standard_Integer BSplCLib::SolveBandedSystem ( const math_Matrix Matrix,
const Standard_Integer  UpperBandWidth,
const Standard_Integer  LowerBandWidth,
TColgp_Array1OfPnt Array 
)
static

This solves the system Matrix.X = B with when Matrix is factored in LU form The Array has the length of the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension.

◆ SolveBandedSystem() [6/6]

static Standard_Integer BSplCLib::SolveBandedSystem ( const math_Matrix Matrix,
const Standard_Integer  UpperBandWidth,
const Standard_Integer  LowerBandWidth,
TColgp_Array1OfPnt2d Array 
)
static

This solves the system Matrix.X = B with when Matrix is factored in LU form The Array has the length of the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension.

◆ TangExtendToConstraint()

static void BSplCLib::TangExtendToConstraint ( const TColStd_Array1OfReal FlatKnots,
const Standard_Real  C1Coefficient,
const Standard_Integer  NumPoles,
Standard_Real Poles,
const Standard_Integer  Dimension,
const Standard_Integer  Degree,
const TColStd_Array1OfReal ConstraintPoint,
const Standard_Integer  Continuity,
const Standard_Boolean  After,
Standard_Integer NbPolesResult,
Standard_Integer NbKnotsRsult,
Standard_Real KnotsResult,
Standard_Real PolesResult 
)
static

Extend a BSpline nD using the tangency map <C1Coefficient> is the coefficient of reparametrisation <Continuity> must be equal to 1, 2 or 3. <Degree> must be greater or equal than <Continuity> + 1.

Warning: <KnotsResult> and <PolesResult> must be dimensionned properly.

◆ Trimming() [1/3]

static void BSplCLib::Trimming ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const Standard_Integer  Dimension,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const TColStd_Array1OfReal Poles,
const Standard_Real  U1,
const Standard_Real  U2,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
TColStd_Array1OfReal NewPoles 
)
static

◆ Trimming() [2/3]

static void BSplCLib::Trimming ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
const Standard_Real  U1,
const Standard_Real  U2,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
TColgp_Array1OfPnt NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

◆ Trimming() [3/3]

static void BSplCLib::Trimming ( const Standard_Integer  Degree,
const Standard_Boolean  Periodic,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfInteger Mults,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
const Standard_Real  U1,
const Standard_Real  U2,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfInteger NewMults,
TColgp_Array1OfPnt2d NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

◆ Unperiodize() [1/3]

static void BSplCLib::Unperiodize ( const Standard_Integer  Degree,
const Standard_Integer  Dimension,
const TColStd_Array1OfInteger Mults,
const TColStd_Array1OfReal Knots,
const TColStd_Array1OfReal Poles,
TColStd_Array1OfInteger NewMults,
TColStd_Array1OfReal NewKnots,
TColStd_Array1OfReal NewPoles 
)
static

◆ Unperiodize() [2/3]

static void BSplCLib::Unperiodize ( const Standard_Integer  Degree,
const TColStd_Array1OfInteger Mults,
const TColStd_Array1OfReal Knots,
const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
TColStd_Array1OfInteger NewMults,
TColStd_Array1OfReal NewKnots,
TColgp_Array1OfPnt NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

◆ Unperiodize() [3/3]

static void BSplCLib::Unperiodize ( const Standard_Integer  Degree,
const TColStd_Array1OfInteger Mults,
const TColStd_Array1OfReal Knots,
const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
TColStd_Array1OfInteger NewMults,
TColStd_Array1OfReal NewKnots,
TColgp_Array1OfPnt2d NewPoles,
TColStd_Array1OfReal NewWeights 
)
static

The documentation for this class was generated from the following file: