Open CASCADE Technology 7.8.0
Public Member Functions
Extrema_LocEPCOfLocateExtPC Class Reference

#include <Extrema_LocEPCOfLocateExtPC.hxx>

Public Member Functions

 Extrema_LocEPCOfLocateExtPC ()
 
 Extrema_LocEPCOfLocateExtPC (const gp_Pnt &P, const Adaptor3d_Curve &C, const Standard_Real U0, const Standard_Real TolU)
 Calculates the distance with a close point. The close point is defined by the parameter value U0. The function F(u)=distance(P,C(u)) has an extremum when g(u)=dF/du=0. The algorithm searches a zero near the close point. TolU is used to decide to stop the iterations. At the nth iteration, the criteria is: abs(Un - Un-1) < TolU.
 
 Extrema_LocEPCOfLocateExtPC (const gp_Pnt &P, const Adaptor3d_Curve &C, const Standard_Real U0, const Standard_Real Umin, const Standard_Real Usup, const Standard_Real TolU)
 Calculates the distance with a close point. The close point is defined by the parameter value U0. The function F(u)=distance(P,C(u)) has an extremum when g(u)=dF/du=0. The algorithm searches a zero near the close point. Zeros are searched between Umin et Usup. TolU is used to decide to stop the iterations. At the nth iteration, the criteria is: abs(Un - Un-1) < TolU.
 
void Initialize (const Adaptor3d_Curve &C, const Standard_Real Umin, const Standard_Real Usup, const Standard_Real TolU)
 sets the fields of the algorithm.
 
void Perform (const gp_Pnt &P, const Standard_Real U0)
 the algorithm is done with the point P. An exception is raised if the fields have not been initialized.
 
Standard_Boolean IsDone () const
 Returns True if the distance is found.
 
Standard_Real SquareDistance () const
 Returns the value of the extremum square distance.
 
Standard_Boolean IsMin () const
 Returns True if the extremum distance is a minimum.
 
const Extrema_POnCurvPoint () const
 Returns the point of the extremum distance.
 

Constructor & Destructor Documentation

◆ Extrema_LocEPCOfLocateExtPC() [1/3]

Extrema_LocEPCOfLocateExtPC::Extrema_LocEPCOfLocateExtPC ( )

◆ Extrema_LocEPCOfLocateExtPC() [2/3]

Extrema_LocEPCOfLocateExtPC::Extrema_LocEPCOfLocateExtPC ( const gp_Pnt P,
const Adaptor3d_Curve C,
const Standard_Real  U0,
const Standard_Real  TolU 
)

Calculates the distance with a close point. The close point is defined by the parameter value U0. The function F(u)=distance(P,C(u)) has an extremum when g(u)=dF/du=0. The algorithm searches a zero near the close point. TolU is used to decide to stop the iterations. At the nth iteration, the criteria is: abs(Un - Un-1) < TolU.

◆ Extrema_LocEPCOfLocateExtPC() [3/3]

Extrema_LocEPCOfLocateExtPC::Extrema_LocEPCOfLocateExtPC ( const gp_Pnt P,
const Adaptor3d_Curve C,
const Standard_Real  U0,
const Standard_Real  Umin,
const Standard_Real  Usup,
const Standard_Real  TolU 
)

Calculates the distance with a close point. The close point is defined by the parameter value U0. The function F(u)=distance(P,C(u)) has an extremum when g(u)=dF/du=0. The algorithm searches a zero near the close point. Zeros are searched between Umin et Usup. TolU is used to decide to stop the iterations. At the nth iteration, the criteria is: abs(Un - Un-1) < TolU.

Member Function Documentation

◆ Initialize()

void Extrema_LocEPCOfLocateExtPC::Initialize ( const Adaptor3d_Curve C,
const Standard_Real  Umin,
const Standard_Real  Usup,
const Standard_Real  TolU 
)

sets the fields of the algorithm.

◆ IsDone()

Standard_Boolean Extrema_LocEPCOfLocateExtPC::IsDone ( ) const

Returns True if the distance is found.

◆ IsMin()

Standard_Boolean Extrema_LocEPCOfLocateExtPC::IsMin ( ) const

Returns True if the extremum distance is a minimum.

◆ Perform()

void Extrema_LocEPCOfLocateExtPC::Perform ( const gp_Pnt P,
const Standard_Real  U0 
)

the algorithm is done with the point P. An exception is raised if the fields have not been initialized.

◆ Point()

const Extrema_POnCurv & Extrema_LocEPCOfLocateExtPC::Point ( ) const

Returns the point of the extremum distance.

◆ SquareDistance()

Standard_Real Extrema_LocEPCOfLocateExtPC::SquareDistance ( ) const

Returns the value of the extremum square distance.


The documentation for this class was generated from the following file: