Open CASCADE Technology 7.8.0
Public Member Functions
GCE2d_MakeEllipse Class Reference

This class implements the following algorithms used to create Ellipse from Geom2d. More...

#include <GCE2d_MakeEllipse.hxx>

Inheritance diagram for GCE2d_MakeEllipse:
Inheritance graph
[legend]

Public Member Functions

 GCE2d_MakeEllipse (const gp_Elips2d &E)
 Creates an ellipse from a non persistent one from package gp.
 
 GCE2d_MakeEllipse (const gp_Ax2d &MajorAxis, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const Standard_Boolean Sense=Standard_True)
 MajorAxis is the local coordinate system of the ellipse. It is the "XAxis". The minor axis is the YAxis of the ellipse. Sense give the sense of parametrization of the Ellipse. It is not forbidden to create an ellipse with MajorRadius = MinorRadius. The status is "InvertRadius" if MajorRadius < MinorRadius or "NegativeRadius" if MinorRadius < 0.
 
 GCE2d_MakeEllipse (const gp_Ax22d &Axis, const Standard_Real MajorRadius, const Standard_Real MinorRadius)
 Axis is the local coordinate system of the ellipse. It is not forbidden to create an ellipse with MajorRadius = MinorRadius. The status is "InvertRadius" if MajorRadius < MinorRadius or "NegativeRadius" if MinorRadius < 0.
 
 GCE2d_MakeEllipse (const gp_Pnt2d &S1, const gp_Pnt2d &S2, const gp_Pnt2d &Center)
 Make an Ellipse centered on the point Center, where.
 
const Handle< Geom2d_Ellipse > & Value () const
 Returns the constructed ellipse. Exceptions StdFail_NotDone if no ellipse is constructed.
 
 operator const Handle< Geom2d_Ellipse > & () const
 
- Public Member Functions inherited from GCE2d_Root
Standard_Boolean IsDone () const
 Returns true if the construction is successful.
 
gce_ErrorType Status () const
 Returns the status of the construction.
 

Additional Inherited Members

- Protected Attributes inherited from GCE2d_Root
gce_ErrorType TheError
 

Detailed Description

This class implements the following algorithms used to create Ellipse from Geom2d.

Constructor & Destructor Documentation

◆ GCE2d_MakeEllipse() [1/4]

GCE2d_MakeEllipse::GCE2d_MakeEllipse ( const gp_Elips2d E)

Creates an ellipse from a non persistent one from package gp.

◆ GCE2d_MakeEllipse() [2/4]

GCE2d_MakeEllipse::GCE2d_MakeEllipse ( const gp_Ax2d MajorAxis,
const Standard_Real  MajorRadius,
const Standard_Real  MinorRadius,
const Standard_Boolean  Sense = Standard_True 
)

MajorAxis is the local coordinate system of the ellipse. It is the "XAxis". The minor axis is the YAxis of the ellipse. Sense give the sense of parametrization of the Ellipse. It is not forbidden to create an ellipse with MajorRadius = MinorRadius. The status is "InvertRadius" if MajorRadius < MinorRadius or "NegativeRadius" if MinorRadius < 0.

◆ GCE2d_MakeEllipse() [3/4]

GCE2d_MakeEllipse::GCE2d_MakeEllipse ( const gp_Ax22d Axis,
const Standard_Real  MajorRadius,
const Standard_Real  MinorRadius 
)

Axis is the local coordinate system of the ellipse. It is not forbidden to create an ellipse with MajorRadius = MinorRadius. The status is "InvertRadius" if MajorRadius < MinorRadius or "NegativeRadius" if MinorRadius < 0.

◆ GCE2d_MakeEllipse() [4/4]

GCE2d_MakeEllipse::GCE2d_MakeEllipse ( const gp_Pnt2d S1,
const gp_Pnt2d S2,
const gp_Pnt2d Center 
)

Make an Ellipse centered on the point Center, where.

  • the major axis of the ellipse is defined by Center and S1,
  • its major radius is the distance between Center and S1, and
  • its minor radius is the distance between S2 and the major axis. The implicit orientation of the ellipse is:
  • the sense defined by Axis or E,
  • the sense defined by points Center, S1 and S2,
  • the trigonometric sense if Sense is not given or is true, or
  • the opposite sense if Sense is false.

Member Function Documentation

◆ operator const Handle< Geom2d_Ellipse > &()

GCE2d_MakeEllipse::operator const Handle< Geom2d_Ellipse > & ( ) const
inline

◆ Value()

const Handle< Geom2d_Ellipse > & GCE2d_MakeEllipse::Value ( ) const

Returns the constructed ellipse. Exceptions StdFail_NotDone if no ellipse is constructed.


The documentation for this class was generated from the following file: