Open CASCADE Technology 7.8.0
Static Public Member Functions
PLib Class Reference

PLib means Polynomial functions library. This pk provides basic computation functions for polynomial functions. Note: weight arrays can be passed by pointer for some functions so that NULL pointer is valid. That means no weights passed. More...

#include <PLib.hxx>

Static Public Member Functions

static TColStd_Array1OfRealNoWeights ()
 Used as argument for a non rational functions.
 
static TColStd_Array2OfRealNoWeights2 ()
 Used as argument for a non rational functions.
 
static void SetPoles (const TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal &FP)
 Copy in FP the coordinates of the poles.
 
static void SetPoles (const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal &Weights, TColStd_Array1OfReal &FP)
 Copy in FP the coordinates of the poles.
 
static void GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt &Poles)
 Get from FP the coordinates of the poles.
 
static void GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal &Weights)
 Get from FP the coordinates of the poles.
 
static void SetPoles (const TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal &FP)
 Copy in FP the coordinates of the poles.
 
static void SetPoles (const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal &Weights, TColStd_Array1OfReal &FP)
 Copy in FP the coordinates of the poles.
 
static void GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt2d &Poles)
 Get from FP the coordinates of the poles.
 
static void GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal &Weights)
 Get from FP the coordinates of the poles.
 
static Standard_Real Bin (const Standard_Integer N, const Standard_Integer P)
 Returns the Binomial Cnp. N should be <= BSplCLib::MaxDegree().
 
static void RationalDerivative (const Standard_Integer Degree, const Standard_Integer N, const Standard_Integer Dimension, Standard_Real &Ders, Standard_Real &RDers, const Standard_Boolean All=Standard_True)
 Computes the derivatives of a ratio at order <N> in dimension <Dimension>.
 
static void RationalDerivatives (const Standard_Integer DerivativesRequest, const Standard_Integer Dimension, Standard_Real &PolesDerivatives, Standard_Real &WeightsDerivatives, Standard_Real &RationalDerivates)
 Computes DerivativesRequest derivatives of a ratio at of a BSpline function of degree <Degree> dimension <Dimension>.
 
static void EvalPolynomial (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, Standard_Real &Results)
 Performs Horner method with synthetic division for derivatives parameter , with <Degree> and <Dimension>. PolynomialCoeff are stored in the following fashion.
 
static void NoDerivativeEvalPolynomial (const Standard_Real U, const Standard_Integer Degree, const Standard_Integer Dimension, const Standard_Integer DegreeDimension, Standard_Real &PolynomialCoeff, Standard_Real &Results)
 Same as above with DerivativeOrder = 0;.
 
static void EvalPoly2Var (const Standard_Real U, const Standard_Real V, const Standard_Integer UDerivativeOrder, const Standard_Integer VDerivativeOrder, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, Standard_Real &Results)
 Applies EvalPolynomial twice to evaluate the derivative of orders UDerivativeOrder in U, VDerivativeOrder in V at parameters U,V.
 
static Standard_Integer EvalLagrange (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &ValueArray, Standard_Real &ParameterArray, Standard_Real &Results)
 Performs the Lagrange Interpolation of given series of points with given parameters with the requested derivative order Results will store things in the following format with d = DerivativeOrder.
 
static Standard_Integer EvalCubicHermite (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Dimension, Standard_Real &ValueArray, Standard_Real &DerivativeArray, Standard_Real &ParameterArray, Standard_Real &Results)
 Performs the Cubic Hermite Interpolation of given series of points with given parameters with the requested derivative order. ValueArray stores the value at the first and last parameter. It has the following format :
 
static Standard_Boolean HermiteCoefficients (const Standard_Real FirstParameter, const Standard_Real LastParameter, const Standard_Integer FirstOrder, const Standard_Integer LastOrder, math_Matrix &MatrixCoefs)
 This build the coefficient of Hermite's polynomes on [FirstParameter, LastParameter].
 
static void CoefficientsPoles (const TColgp_Array1OfPnt &Coefs, const TColStd_Array1OfReal *WCoefs, TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal *WPoles)
 
static void CoefficientsPoles (const TColgp_Array1OfPnt2d &Coefs, const TColStd_Array1OfReal *WCoefs, TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal *WPoles)
 
static void CoefficientsPoles (const TColStd_Array1OfReal &Coefs, const TColStd_Array1OfReal *WCoefs, TColStd_Array1OfReal &Poles, TColStd_Array1OfReal *WPoles)
 
static void CoefficientsPoles (const Standard_Integer dim, const TColStd_Array1OfReal &Coefs, const TColStd_Array1OfReal *WCoefs, TColStd_Array1OfReal &Poles, TColStd_Array1OfReal *WPoles)
 
static void Trimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array1OfPnt &Coeffs, TColStd_Array1OfReal *WCoeffs)
 
static void Trimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array1OfPnt2d &Coeffs, TColStd_Array1OfReal *WCoeffs)
 
static void Trimming (const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal &Coeffs, TColStd_Array1OfReal *WCoeffs)
 
static void Trimming (const Standard_Real U1, const Standard_Real U2, const Standard_Integer dim, TColStd_Array1OfReal &Coeffs, TColStd_Array1OfReal *WCoeffs)
 
static void CoefficientsPoles (const TColgp_Array2OfPnt &Coefs, const TColStd_Array2OfReal *WCoefs, TColgp_Array2OfPnt &Poles, TColStd_Array2OfReal *WPoles)
 
static void UTrimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array2OfPnt &Coeffs, TColStd_Array2OfReal *WCoeffs)
 
static void VTrimming (const Standard_Real V1, const Standard_Real V2, TColgp_Array2OfPnt &Coeffs, TColStd_Array2OfReal *WCoeffs)
 
static Standard_Boolean HermiteInterpolate (const Standard_Integer Dimension, const Standard_Real FirstParameter, const Standard_Real LastParameter, const Standard_Integer FirstOrder, const Standard_Integer LastOrder, const TColStd_Array2OfReal &FirstConstr, const TColStd_Array2OfReal &LastConstr, TColStd_Array1OfReal &Coefficients)
 Compute the coefficients in the canonical base of the polynomial satisfying the given constraints at the given parameters The array FirstContr(i,j) i=1,Dimension j=0,FirstOrder contains the values of the constraint at parameter FirstParameter idem for LastConstr.
 
static void JacobiParameters (const GeomAbs_Shape ConstraintOrder, const Standard_Integer MaxDegree, const Standard_Integer Code, Standard_Integer &NbGaussPoints, Standard_Integer &WorkDegree)
 Compute the number of points used for integral computations (NbGaussPoints) and the degree of Jacobi Polynomial (WorkDegree). ConstraintOrder has to be GeomAbs_C0, GeomAbs_C1 or GeomAbs_C2 Code: Code d' init. des parametres de discretisation. = -5 = -4 = -3 = -2 = -1 = 1 calcul rapide avec precision moyenne. = 2 calcul rapide avec meilleure precision. = 3 calcul un peu plus lent avec bonne precision. = 4 calcul lent avec la meilleure precision possible.
 
static Standard_Integer NivConstr (const GeomAbs_Shape ConstraintOrder)
 translates from GeomAbs_Shape to Integer
 
static GeomAbs_Shape ConstraintOrder (const Standard_Integer NivConstr)
 translates from Integer to GeomAbs_Shape
 
static void EvalLength (const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, const Standard_Real U1, const Standard_Real U2, Standard_Real &Length)
 
static void EvalLength (const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, const Standard_Real U1, const Standard_Real U2, const Standard_Real Tol, Standard_Real &Length, Standard_Real &Error)
 

Detailed Description

PLib means Polynomial functions library. This pk provides basic computation functions for polynomial functions. Note: weight arrays can be passed by pointer for some functions so that NULL pointer is valid. That means no weights passed.

Member Function Documentation

◆ Bin()

Returns the Binomial Cnp. N should be <= BSplCLib::MaxDegree().

◆ CoefficientsPoles() [1/5]

static void PLib::CoefficientsPoles ( const Standard_Integer  dim,
const TColStd_Array1OfReal Coefs,
const TColStd_Array1OfReal WCoefs,
TColStd_Array1OfReal Poles,
TColStd_Array1OfReal WPoles 
)
static

◆ CoefficientsPoles() [2/5]

static void PLib::CoefficientsPoles ( const TColgp_Array1OfPnt Coefs,
const TColStd_Array1OfReal WCoefs,
TColgp_Array1OfPnt Poles,
TColStd_Array1OfReal WPoles 
)
static

◆ CoefficientsPoles() [3/5]

static void PLib::CoefficientsPoles ( const TColgp_Array1OfPnt2d Coefs,
const TColStd_Array1OfReal WCoefs,
TColgp_Array1OfPnt2d Poles,
TColStd_Array1OfReal WPoles 
)
static

◆ CoefficientsPoles() [4/5]

static void PLib::CoefficientsPoles ( const TColgp_Array2OfPnt Coefs,
const TColStd_Array2OfReal WCoefs,
TColgp_Array2OfPnt Poles,
TColStd_Array2OfReal WPoles 
)
static

◆ CoefficientsPoles() [5/5]

static void PLib::CoefficientsPoles ( const TColStd_Array1OfReal Coefs,
const TColStd_Array1OfReal WCoefs,
TColStd_Array1OfReal Poles,
TColStd_Array1OfReal WPoles 
)
static

◆ ConstraintOrder()

static GeomAbs_Shape PLib::ConstraintOrder ( const Standard_Integer  NivConstr)
static

translates from Integer to GeomAbs_Shape

◆ EvalCubicHermite()

static Standard_Integer PLib::EvalCubicHermite ( const Standard_Real  U,
const Standard_Integer  DerivativeOrder,
const Standard_Integer  Dimension,
Standard_Real ValueArray,
Standard_Real DerivativeArray,
Standard_Real ParameterArray,
Standard_Real Results 
)
static

Performs the Cubic Hermite Interpolation of given series of points with given parameters with the requested derivative order. ValueArray stores the value at the first and last parameter. It has the following format :

[0], [Dimension-1] : value at first param
[Dimension], [Dimension + Dimension-1] : value at last param

Derivative array stores the value of the derivatives at the first parameter and at the last parameter in the following format

[0], [Dimension-1] : derivative at
Definition NCollection_UBTree.hxx:64

first param

[Dimension], [Dimension + Dimension-1] : derivative at

last param

ParameterArray stores the first and last parameter in the following format :

[0] : first parameter
[1] : last parameter

Results will store things in the following format with d = DerivativeOrder

[0], [Dimension-1] : value
[Dimension], [Dimension + Dimension-1] : first derivative
[d *Dimension], [d*Dimension + Dimension-1]: dth derivative

◆ EvalLagrange()

static Standard_Integer PLib::EvalLagrange ( const Standard_Real  U,
const Standard_Integer  DerivativeOrder,
const Standard_Integer  Degree,
const Standard_Integer  Dimension,
Standard_Real ValueArray,
Standard_Real ParameterArray,
Standard_Real Results 
)
static

Performs the Lagrange Interpolation of given series of points with given parameters with the requested derivative order Results will store things in the following format with d = DerivativeOrder.

[0], [Dimension-1] : value
[Dimension], [Dimension + Dimension-1] : first derivative
[d *Dimension], [d*Dimension + Dimension-1]: dth derivative

◆ EvalLength() [1/2]

static void PLib::EvalLength ( const Standard_Integer  Degree,
const Standard_Integer  Dimension,
Standard_Real PolynomialCoeff,
const Standard_Real  U1,
const Standard_Real  U2,
const Standard_Real  Tol,
Standard_Real Length,
Standard_Real Error 
)
static

◆ EvalLength() [2/2]

static void PLib::EvalLength ( const Standard_Integer  Degree,
const Standard_Integer  Dimension,
Standard_Real PolynomialCoeff,
const Standard_Real  U1,
const Standard_Real  U2,
Standard_Real Length 
)
static

◆ EvalPoly2Var()

static void PLib::EvalPoly2Var ( const Standard_Real  U,
const Standard_Real  V,
const Standard_Integer  UDerivativeOrder,
const Standard_Integer  VDerivativeOrder,
const Standard_Integer  UDegree,
const Standard_Integer  VDegree,
const Standard_Integer  Dimension,
Standard_Real PolynomialCoeff,
Standard_Real Results 
)
static

Applies EvalPolynomial twice to evaluate the derivative of orders UDerivativeOrder in U, VDerivativeOrder in V at parameters U,V.

PolynomialCoeff are stored in the following fashion

c00(1) .... c00(Dimension)
c10(1) .... c10(Dimension)
....
cm0(1) .... cm0(Dimension)
....
c01(1) .... c01(Dimension)
c11(1) .... c11(Dimension)
....
cm1(1) .... cm1(Dimension)
....
c0n(1) .... c0n(Dimension)
c1n(1) .... c1n(Dimension)
....
cmn(1) .... cmn(Dimension)

where the polynomial is defined as :

2 m
c00 + c10 U + c20 U + .... + cm0 U
2 m
+ c01 V + c11 UV + c21 U V + .... + cm1 U V
n m n
+ .... + c0n V + .... + cmn U V

with m = UDegree and n = VDegree

Results stores the result in the following format

f(1) f(2) .... f(Dimension)

Warning: <Results> and <PolynomialCoeff> must be dimensioned properly

◆ EvalPolynomial()

static void PLib::EvalPolynomial ( const Standard_Real  U,
const Standard_Integer  DerivativeOrder,
const Standard_Integer  Degree,
const Standard_Integer  Dimension,
Standard_Real PolynomialCoeff,
Standard_Real Results 
)
static

Performs Horner method with synthetic division for derivatives parameter , with <Degree> and <Dimension>. PolynomialCoeff are stored in the following fashion.

c0(1) c0(2) .... c0(Dimension)
c1(1) c1(2) .... c1(Dimension)
cDegree(1) cDegree(2) .... cDegree(Dimension)

where the polynomial is defined as :

2 Degree
c0 + c1 X + c2 X + .... cDegree X

Results stores the result in the following format

f(1) f(2) .... f(Dimension)
(1) (1) (1)
f (1) f (2) .... f (Dimension)
f (1) f (Dimension)

this just evaluates the point at parameter U

Warning: <Results> and <PolynomialCoeff> must be dimensioned properly

◆ GetPoles() [1/4]

static void PLib::GetPoles ( const TColStd_Array1OfReal FP,
TColgp_Array1OfPnt Poles 
)
static

Get from FP the coordinates of the poles.

◆ GetPoles() [2/4]

static void PLib::GetPoles ( const TColStd_Array1OfReal FP,
TColgp_Array1OfPnt Poles,
TColStd_Array1OfReal Weights 
)
static

Get from FP the coordinates of the poles.

◆ GetPoles() [3/4]

static void PLib::GetPoles ( const TColStd_Array1OfReal FP,
TColgp_Array1OfPnt2d Poles 
)
static

Get from FP the coordinates of the poles.

◆ GetPoles() [4/4]

static void PLib::GetPoles ( const TColStd_Array1OfReal FP,
TColgp_Array1OfPnt2d Poles,
TColStd_Array1OfReal Weights 
)
static

Get from FP the coordinates of the poles.

◆ HermiteCoefficients()

static Standard_Boolean PLib::HermiteCoefficients ( const Standard_Real  FirstParameter,
const Standard_Real  LastParameter,
const Standard_Integer  FirstOrder,
const Standard_Integer  LastOrder,
math_Matrix MatrixCoefs 
)
static

This build the coefficient of Hermite's polynomes on [FirstParameter, LastParameter].

if j <= FirstOrder+1 then

MatrixCoefs[i, j] = ith coefficient of the polynome H0,j-1

else

MatrixCoefs[i, j] = ith coefficient of the polynome H1,k with k = j - FirstOrder - 2

return false if

  • |FirstParameter| > 100
  • |LastParameter| > 100
  • |FirstParameter| +|LastParameter| < 1/100
  • |LastParameter - FirstParameter| / (|FirstParameter| +|LastParameter|) < 1/100

◆ HermiteInterpolate()

static Standard_Boolean PLib::HermiteInterpolate ( const Standard_Integer  Dimension,
const Standard_Real  FirstParameter,
const Standard_Real  LastParameter,
const Standard_Integer  FirstOrder,
const Standard_Integer  LastOrder,
const TColStd_Array2OfReal FirstConstr,
const TColStd_Array2OfReal LastConstr,
TColStd_Array1OfReal Coefficients 
)
static

Compute the coefficients in the canonical base of the polynomial satisfying the given constraints at the given parameters The array FirstContr(i,j) i=1,Dimension j=0,FirstOrder contains the values of the constraint at parameter FirstParameter idem for LastConstr.

◆ JacobiParameters()

static void PLib::JacobiParameters ( const GeomAbs_Shape  ConstraintOrder,
const Standard_Integer  MaxDegree,
const Standard_Integer  Code,
Standard_Integer NbGaussPoints,
Standard_Integer WorkDegree 
)
static

Compute the number of points used for integral computations (NbGaussPoints) and the degree of Jacobi Polynomial (WorkDegree). ConstraintOrder has to be GeomAbs_C0, GeomAbs_C1 or GeomAbs_C2 Code: Code d' init. des parametres de discretisation. = -5 = -4 = -3 = -2 = -1 = 1 calcul rapide avec precision moyenne. = 2 calcul rapide avec meilleure precision. = 3 calcul un peu plus lent avec bonne precision. = 4 calcul lent avec la meilleure precision possible.

◆ NivConstr()

static Standard_Integer PLib::NivConstr ( const GeomAbs_Shape  ConstraintOrder)
static

translates from GeomAbs_Shape to Integer

◆ NoDerivativeEvalPolynomial()

static void PLib::NoDerivativeEvalPolynomial ( const Standard_Real  U,
const Standard_Integer  Degree,
const Standard_Integer  Dimension,
const Standard_Integer  DegreeDimension,
Standard_Real PolynomialCoeff,
Standard_Real Results 
)
static

Same as above with DerivativeOrder = 0;.

◆ NoWeights()

static TColStd_Array1OfReal * PLib::NoWeights ( )
inlinestatic

Used as argument for a non rational functions.

◆ NoWeights2()

static TColStd_Array2OfReal * PLib::NoWeights2 ( )
inlinestatic

Used as argument for a non rational functions.

◆ RationalDerivative()

static void PLib::RationalDerivative ( const Standard_Integer  Degree,
const Standard_Integer  N,
const Standard_Integer  Dimension,
Standard_Real Ders,
Standard_Real RDers,
const Standard_Boolean  All = Standard_True 
)
static

Computes the derivatives of a ratio at order <N> in dimension <Dimension>.

<Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<Degree>). For orders higher than <Degree> the inputcd /s2d1/BMDL/ derivatives are assumed to be 0.

Content of <Ders> :

x(1),x(2),...,x(Dimension),w x'(1),x'(2),...,x'(Dimension),w' x''(1),x''(2),...,x''(Dimension),w''

If <All> is false, only the derivative at order <N> is computed. <RDers> is an array of length Dimension which will contain the result :

x(1)/w , x(2)/w , ... derivated <N> times

If <All> is true all the derivatives up to order <N> are computed. <RDers> is an array of length Dimension * (N+1) which will contains :

x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <1> times x(1)/w , x(2)/w , ... derivated <2> times ... x(1)/w , x(2)/w , ... derivated <N> times

Warning: <RDers> must be dimensionned properly.

◆ RationalDerivatives()

static void PLib::RationalDerivatives ( const Standard_Integer  DerivativesRequest,
const Standard_Integer  Dimension,
Standard_Real PolesDerivatives,
Standard_Real WeightsDerivatives,
Standard_Real RationalDerivates 
)
static

Computes DerivativesRequest derivatives of a ratio at of a BSpline function of degree <Degree> dimension <Dimension>.

<PolesDerivatives> is an array containing the values of the input derivatives from 0 to <DerivativeRequest> For orders higher than <Degree> the input derivatives are assumed to be 0.

Content of <PoleasDerivatives> :

x(1),x(2),...,x(Dimension) x'(1),x'(2),...,x'(Dimension) x''(1),x''(2),...,x''(Dimension)

WeightsDerivatives is an array that contains derivatives from 0 to <DerivativeRequest> After returning from the routine the array RationalDerivatives contains the following x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated once x(1)/w , x(2)/w , ... twice x(1)/w , x(2)/w , ... derivated <DerivativeRequest> times

The array RationalDerivatives and PolesDerivatives can be same since the overwrite is non destructive within the algorithm

Warning: <RationalDerivates> must be dimensionned properly.

◆ SetPoles() [1/4]

static void PLib::SetPoles ( const TColgp_Array1OfPnt Poles,
const TColStd_Array1OfReal Weights,
TColStd_Array1OfReal FP 
)
static

Copy in FP the coordinates of the poles.

◆ SetPoles() [2/4]

static void PLib::SetPoles ( const TColgp_Array1OfPnt Poles,
TColStd_Array1OfReal FP 
)
static

Copy in FP the coordinates of the poles.

◆ SetPoles() [3/4]

static void PLib::SetPoles ( const TColgp_Array1OfPnt2d Poles,
const TColStd_Array1OfReal Weights,
TColStd_Array1OfReal FP 
)
static

Copy in FP the coordinates of the poles.

◆ SetPoles() [4/4]

static void PLib::SetPoles ( const TColgp_Array1OfPnt2d Poles,
TColStd_Array1OfReal FP 
)
static

Copy in FP the coordinates of the poles.

◆ Trimming() [1/4]

static void PLib::Trimming ( const Standard_Real  U1,
const Standard_Real  U2,
const Standard_Integer  dim,
TColStd_Array1OfReal Coeffs,
TColStd_Array1OfReal WCoeffs 
)
static

◆ Trimming() [2/4]

static void PLib::Trimming ( const Standard_Real  U1,
const Standard_Real  U2,
TColgp_Array1OfPnt Coeffs,
TColStd_Array1OfReal WCoeffs 
)
static

◆ Trimming() [3/4]

static void PLib::Trimming ( const Standard_Real  U1,
const Standard_Real  U2,
TColgp_Array1OfPnt2d Coeffs,
TColStd_Array1OfReal WCoeffs 
)
static

◆ Trimming() [4/4]

static void PLib::Trimming ( const Standard_Real  U1,
const Standard_Real  U2,
TColStd_Array1OfReal Coeffs,
TColStd_Array1OfReal WCoeffs 
)
static

◆ UTrimming()

static void PLib::UTrimming ( const Standard_Real  U1,
const Standard_Real  U2,
TColgp_Array2OfPnt Coeffs,
TColStd_Array2OfReal WCoeffs 
)
static

◆ VTrimming()

static void PLib::VTrimming ( const Standard_Real  V1,
const Standard_Real  V2,
TColgp_Array2OfPnt Coeffs,
TColStd_Array2OfReal WCoeffs 
)
static

The documentation for this class was generated from the following file: