Open CASCADE Technology  7.7.0.dev
Public Member Functions

IntAna_Quadric Class Reference

This class provides a description of Quadrics by their Coefficients in natural coordinate system. More...

#include <IntAna_Quadric.hxx>

Public Member Functions

 IntAna_Quadric ()
 Empty Constructor. More...
 
 IntAna_Quadric (const gp_Pln &P)
 Creates a Quadric from a Pln. More...
 
 IntAna_Quadric (const gp_Sphere &Sph)
 Creates a Quadric from a Sphere. More...
 
 IntAna_Quadric (const gp_Cylinder &Cyl)
 Creates a Quadric from a Cylinder. More...
 
 IntAna_Quadric (const gp_Cone &Cone)
 Creates a Quadric from a Cone. More...
 
void SetQuadric (const gp_Pln &P)
 Initializes the quadric with a Pln. More...
 
void SetQuadric (const gp_Sphere &Sph)
 Initialize the quadric with a Sphere. More...
 
void SetQuadric (const gp_Cone &Con)
 Initializes the quadric with a Cone. More...
 
void SetQuadric (const gp_Cylinder &Cyl)
 Initializes the quadric with a Cylinder. More...
 
void Coefficients (Standard_Real &xCXX, Standard_Real &xCYY, Standard_Real &xCZZ, Standard_Real &xCXY, Standard_Real &xCXZ, Standard_Real &xCYZ, Standard_Real &xCX, Standard_Real &xCY, Standard_Real &xCZ, Standard_Real &xCCte) const
 Returns the coefficients of the polynomial equation which define the quadric: xCXX x**2 + xCYY y**2 + xCZZ z**2. More...
 
void NewCoefficients (Standard_Real &xCXX, Standard_Real &xCYY, Standard_Real &xCZZ, Standard_Real &xCXY, Standard_Real &xCXZ, Standard_Real &xCYZ, Standard_Real &xCX, Standard_Real &xCY, Standard_Real &xCZ, Standard_Real &xCCte, const gp_Ax3 &Axis) const
 Returns the coefficients of the polynomial equation ( written in the natural coordinates system ) in the local coordinates system defined by Axis. More...
 
const NCollection_List< gp_Pnt > & SpecialPoints () const
 Returns the list of special points (with singularities) More...
 

Detailed Description

This class provides a description of Quadrics by their Coefficients in natural coordinate system.

Constructor & Destructor Documentation

◆ IntAna_Quadric() [1/5]

IntAna_Quadric::IntAna_Quadric ( )

Empty Constructor.

◆ IntAna_Quadric() [2/5]

IntAna_Quadric::IntAna_Quadric ( const gp_Pln P)

Creates a Quadric from a Pln.

◆ IntAna_Quadric() [3/5]

IntAna_Quadric::IntAna_Quadric ( const gp_Sphere Sph)

Creates a Quadric from a Sphere.

◆ IntAna_Quadric() [4/5]

IntAna_Quadric::IntAna_Quadric ( const gp_Cylinder Cyl)

Creates a Quadric from a Cylinder.

◆ IntAna_Quadric() [5/5]

IntAna_Quadric::IntAna_Quadric ( const gp_Cone Cone)

Creates a Quadric from a Cone.

Member Function Documentation

◆ Coefficients()

void IntAna_Quadric::Coefficients ( Standard_Real xCXX,
Standard_Real xCYY,
Standard_Real xCZZ,
Standard_Real xCXY,
Standard_Real xCXZ,
Standard_Real xCYZ,
Standard_Real xCX,
Standard_Real xCY,
Standard_Real xCZ,
Standard_Real xCCte 
) const

Returns the coefficients of the polynomial equation which define the quadric: xCXX x**2 + xCYY y**2 + xCZZ z**2.

  • 2 ( xCXY x y + xCXZ x z + xCYZ y z )
  • 2 ( xCX x + xCY y + xCZ z )
  • xCCte

◆ NewCoefficients()

void IntAna_Quadric::NewCoefficients ( Standard_Real xCXX,
Standard_Real xCYY,
Standard_Real xCZZ,
Standard_Real xCXY,
Standard_Real xCXZ,
Standard_Real xCYZ,
Standard_Real xCX,
Standard_Real xCY,
Standard_Real xCZ,
Standard_Real xCCte,
const gp_Ax3 Axis 
) const

Returns the coefficients of the polynomial equation ( written in the natural coordinates system ) in the local coordinates system defined by Axis.

◆ SetQuadric() [1/4]

void IntAna_Quadric::SetQuadric ( const gp_Cone Con)

Initializes the quadric with a Cone.

◆ SetQuadric() [2/4]

void IntAna_Quadric::SetQuadric ( const gp_Cylinder Cyl)

Initializes the quadric with a Cylinder.

◆ SetQuadric() [3/4]

void IntAna_Quadric::SetQuadric ( const gp_Pln P)

Initializes the quadric with a Pln.

◆ SetQuadric() [4/4]

void IntAna_Quadric::SetQuadric ( const gp_Sphere Sph)

Initialize the quadric with a Sphere.

◆ SpecialPoints()

const NCollection_List<gp_Pnt>& IntAna_Quadric::SpecialPoints ( ) const
inline

Returns the list of special points (with singularities)


The documentation for this class was generated from the following file: