|
static TColStd_Array1OfReal * | NoWeights () |
| Used as argument for a non rational functions.
|
|
static TColStd_Array2OfReal * | NoWeights2 () |
| Used as argument for a non rational functions.
|
|
static void | SetPoles (const TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal &FP) |
| Copy in FP the coordinates of the poles.
|
|
static void | SetPoles (const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal &Weights, TColStd_Array1OfReal &FP) |
| Copy in FP the coordinates of the poles.
|
|
static void | GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt &Poles) |
| Get from FP the coordinates of the poles.
|
|
static void | GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal &Weights) |
| Get from FP the coordinates of the poles.
|
|
static void | SetPoles (const TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal &FP) |
| Copy in FP the coordinates of the poles.
|
|
static void | SetPoles (const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal &Weights, TColStd_Array1OfReal &FP) |
| Copy in FP the coordinates of the poles.
|
|
static void | GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt2d &Poles) |
| Get from FP the coordinates of the poles.
|
|
static void | GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal &Weights) |
| Get from FP the coordinates of the poles.
|
|
static Standard_Real | Bin (const Standard_Integer N, const Standard_Integer P) |
| Returns the Binomial Cnp. N should be <= BSplCLib::MaxDegree().
|
|
static void | RationalDerivative (const Standard_Integer Degree, const Standard_Integer N, const Standard_Integer Dimension, Standard_Real &Ders, Standard_Real &RDers, const Standard_Boolean All=Standard_True) |
| Computes the derivatives of a ratio at order <N> in dimension <Dimension>.
|
|
static void | RationalDerivatives (const Standard_Integer DerivativesRequest, const Standard_Integer Dimension, Standard_Real &PolesDerivatives, Standard_Real &WeightsDerivatives, Standard_Real &RationalDerivates) |
| Computes DerivativesRequest derivatives of a ratio at of a BSpline function of degree <Degree> dimension <Dimension>.
|
|
static void | EvalPolynomial (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, Standard_Real &Results) |
| Performs Horner method with synthetic division for derivatives parameter , with <Degree> and <Dimension>. PolynomialCoeff are stored in the following fashion.
|
|
static void | NoDerivativeEvalPolynomial (const Standard_Real U, const Standard_Integer Degree, const Standard_Integer Dimension, const Standard_Integer DegreeDimension, Standard_Real &PolynomialCoeff, Standard_Real &Results) |
| Same as above with DerivativeOrder = 0;.
|
|
static void | EvalPoly2Var (const Standard_Real U, const Standard_Real V, const Standard_Integer UDerivativeOrder, const Standard_Integer VDerivativeOrder, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, Standard_Real &Results) |
| Applies EvalPolynomial twice to evaluate the derivative of orders UDerivativeOrder in U, VDerivativeOrder in V at parameters U,V.
|
|
static Standard_Integer | EvalLagrange (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &ValueArray, Standard_Real &ParameterArray, Standard_Real &Results) |
| Performs the Lagrange Interpolation of given series of points with given parameters with the requested derivative order Results will store things in the following format with d = DerivativeOrder.
|
|
static Standard_Integer | EvalCubicHermite (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Dimension, Standard_Real &ValueArray, Standard_Real &DerivativeArray, Standard_Real &ParameterArray, Standard_Real &Results) |
| Performs the Cubic Hermite Interpolation of given series of points with given parameters with the requested derivative order. ValueArray stores the value at the first and last parameter. It has the following format :
|
|
static Standard_Boolean | HermiteCoefficients (const Standard_Real FirstParameter, const Standard_Real LastParameter, const Standard_Integer FirstOrder, const Standard_Integer LastOrder, math_Matrix &MatrixCoefs) |
| This build the coefficient of Hermite's polynomes on [FirstParameter, LastParameter].
|
|
static void | CoefficientsPoles (const TColgp_Array1OfPnt &Coefs, const TColStd_Array1OfReal *WCoefs, TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal *WPoles) |
|
static void | CoefficientsPoles (const TColgp_Array1OfPnt2d &Coefs, const TColStd_Array1OfReal *WCoefs, TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal *WPoles) |
|
static void | CoefficientsPoles (const TColStd_Array1OfReal &Coefs, const TColStd_Array1OfReal *WCoefs, TColStd_Array1OfReal &Poles, TColStd_Array1OfReal *WPoles) |
|
static void | CoefficientsPoles (const Standard_Integer dim, const TColStd_Array1OfReal &Coefs, const TColStd_Array1OfReal *WCoefs, TColStd_Array1OfReal &Poles, TColStd_Array1OfReal *WPoles) |
|
static void | Trimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array1OfPnt &Coeffs, TColStd_Array1OfReal *WCoeffs) |
|
static void | Trimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array1OfPnt2d &Coeffs, TColStd_Array1OfReal *WCoeffs) |
|
static void | Trimming (const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal &Coeffs, TColStd_Array1OfReal *WCoeffs) |
|
static void | Trimming (const Standard_Real U1, const Standard_Real U2, const Standard_Integer dim, TColStd_Array1OfReal &Coeffs, TColStd_Array1OfReal *WCoeffs) |
|
static void | CoefficientsPoles (const TColgp_Array2OfPnt &Coefs, const TColStd_Array2OfReal *WCoefs, TColgp_Array2OfPnt &Poles, TColStd_Array2OfReal *WPoles) |
|
static void | UTrimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array2OfPnt &Coeffs, TColStd_Array2OfReal *WCoeffs) |
|
static void | VTrimming (const Standard_Real V1, const Standard_Real V2, TColgp_Array2OfPnt &Coeffs, TColStd_Array2OfReal *WCoeffs) |
|
static Standard_Boolean | HermiteInterpolate (const Standard_Integer Dimension, const Standard_Real FirstParameter, const Standard_Real LastParameter, const Standard_Integer FirstOrder, const Standard_Integer LastOrder, const TColStd_Array2OfReal &FirstConstr, const TColStd_Array2OfReal &LastConstr, TColStd_Array1OfReal &Coefficients) |
| Compute the coefficients in the canonical base of the polynomial satisfying the given constraints at the given parameters The array FirstContr(i,j) i=1,Dimension j=0,FirstOrder contains the values of the constraint at parameter FirstParameter idem for LastConstr.
|
|
static void | JacobiParameters (const GeomAbs_Shape ConstraintOrder, const Standard_Integer MaxDegree, const Standard_Integer Code, Standard_Integer &NbGaussPoints, Standard_Integer &WorkDegree) |
| Compute the number of points used for integral computations (NbGaussPoints) and the degree of Jacobi Polynomial (WorkDegree). ConstraintOrder has to be GeomAbs_C0, GeomAbs_C1 or GeomAbs_C2 Code: Code d' init. des parametres de discretisation. = -5 = -4 = -3 = -2 = -1 = 1 calcul rapide avec precision moyenne. = 2 calcul rapide avec meilleure precision. = 3 calcul un peu plus lent avec bonne precision. = 4 calcul lent avec la meilleure precision possible.
|
|
static Standard_Integer | NivConstr (const GeomAbs_Shape ConstraintOrder) |
| translates from GeomAbs_Shape to Integer
|
|
static GeomAbs_Shape | ConstraintOrder (const Standard_Integer NivConstr) |
| translates from Integer to GeomAbs_Shape
|
|
static void | EvalLength (const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, const Standard_Real U1, const Standard_Real U2, Standard_Real &Length) |
|
static void | EvalLength (const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, const Standard_Real U1, const Standard_Real U2, const Standard_Real Tol, Standard_Real &Length, Standard_Real &Error) |
|
PLib means Polynomial functions library. This pk provides basic computation functions for polynomial functions. Note: weight arrays can be passed by pointer for some functions so that NULL pointer is valid. That means no weights passed.
Computes the derivatives of a ratio at order <N> in dimension <Dimension>.
<Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<Degree>). For orders higher than <Degree> the inputcd /s2d1/BMDL/ derivatives are assumed to be 0.
Content of <Ders> :
x(1),x(2),...,x(Dimension),w x'(1),x'(2),...,x'(Dimension),w' x''(1),x''(2),...,x''(Dimension),w''
If <All> is false, only the derivative at order <N> is computed. <RDers> is an array of length Dimension which will contain the result :
x(1)/w , x(2)/w , ... derivated <N> times
If <All> is true all the derivatives up to order <N> are computed. <RDers> is an array of length Dimension * (N+1) which will contains :
x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <1> times x(1)/w , x(2)/w , ... derivated <2> times ... x(1)/w , x(2)/w , ... derivated <N> times
Warning: <RDers> must be dimensionned properly.
Computes DerivativesRequest derivatives of a ratio at of a BSpline function of degree <Degree> dimension <Dimension>.
<PolesDerivatives> is an array containing the values of the input derivatives from 0 to <DerivativeRequest> For orders higher than <Degree> the input derivatives are assumed to be 0.
Content of <PoleasDerivatives> :
x(1),x(2),...,x(Dimension) x'(1),x'(2),...,x'(Dimension) x''(1),x''(2),...,x''(Dimension)
WeightsDerivatives is an array that contains derivatives from 0 to <DerivativeRequest> After returning from the routine the array RationalDerivatives contains the following x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated once x(1)/w , x(2)/w , ... twice x(1)/w , x(2)/w , ... derivated <DerivativeRequest> times
The array RationalDerivatives and PolesDerivatives can be same since the overwrite is non destructive within the algorithm
Warning: <RationalDerivates> must be dimensionned properly.