Open CASCADE Technology  7.6.0.dev
Public Member Functions

gp_GTrsf2d Class Reference

Defines a non persistent transformation in 2D space. This transformation is a general transformation. It can be a gp_Trsf2d, an affinity, or you can define your own transformation giving the corresponding matrix of transformation. More...

#include <gp_GTrsf2d.hxx>

Public Member Functions

 gp_GTrsf2d ()
 returns identity transformation. More...
 
 gp_GTrsf2d (const gp_Trsf2d &theT)
 Converts the gp_Trsf2d transformation theT into a general transformation. More...
 
 gp_GTrsf2d (const gp_Mat2d &theM, const gp_XY &theV)
 Creates a transformation based on the matrix theM and the vector theV where theM defines the vectorial part of the transformation, and theV the translation part. More...
 
void SetAffinity (const gp_Ax2d &theA, const Standard_Real theRatio)
 Changes this transformation into an affinity of ratio theRatio with respect to the axis theA. Note: An affinity is a point-by-point transformation that transforms any point P into a point P' such that if H is the orthogonal projection of P on the axis theA, the vectors HP and HP' satisfy: HP' = theRatio * HP. More...
 
void SetValue (const Standard_Integer theRow, const Standard_Integer theCol, const Standard_Real theValue)
 Replaces the coefficient (theRow, theCol) of the matrix representing this transformation by theValue, Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3. More...
 
void SetTranslationPart (const gp_XY &theCoord)
 Replaces the translation part of this transformation by the coordinates of the number pair theCoord. More...
 
void SetTrsf2d (const gp_Trsf2d &theT)
 Assigns the vectorial and translation parts of theT to this transformation. More...
 
void SetVectorialPart (const gp_Mat2d &theMatrix)
 Replaces the vectorial part of this transformation by theMatrix. More...
 
Standard_Boolean IsNegative () const
 Returns true if the determinant of the vectorial part of this transformation is negative. More...
 
Standard_Boolean IsSingular () const
 Returns true if this transformation is singular (and therefore, cannot be inverted). Note: The Gauss LU decomposition is used to invert the transformation matrix. Consequently, the transformation is considered as singular if the largest pivot found is less than or equal to gp::Resolution(). Warning If this transformation is singular, it cannot be inverted. More...
 
gp_TrsfForm Form () const
 Returns the nature of the transformation. It can be an identity transformation, a rotation, a translation, a mirror transformation (relative to a point or axis), a scaling transformation, a compound transformation or some other type of transformation. More...
 
const gp_XYTranslationPart () const
 Returns the translation part of the GTrsf2d. More...
 
const gp_Mat2dVectorialPart () const
 Computes the vectorial part of the GTrsf2d. The returned Matrix is a 2*2 matrix. More...
 
Standard_Real Value (const Standard_Integer theRow, const Standard_Integer theCol) const
 Returns the coefficients of the global matrix of transformation. Raised OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3. More...
 
Standard_Real operator() (const Standard_Integer theRow, const Standard_Integer theCol) const
 
void Invert ()
 
gp_GTrsf2d Inverted () const
 Computes the reverse transformation. Raised an exception if the matrix of the transformation is not inversible. More...
 
gp_GTrsf2d Multiplied (const gp_GTrsf2d &theT) const
 Computes the transformation composed with theT and <me>. In a C++ implementation you can also write Tcomposed = <me> * theT. Example : More...
 
gp_GTrsf2d operator* (const gp_GTrsf2d &theT) const
 
void Multiply (const gp_GTrsf2d &theT)
 
void operator*= (const gp_GTrsf2d &theT)
 
void PreMultiply (const gp_GTrsf2d &theT)
 Computes the product of the transformation theT and this transformation, and assigns the result to this transformation: this = theT * this. More...
 
void Power (const Standard_Integer theN)
 
gp_GTrsf2d Powered (const Standard_Integer theN) const
 Computes the following composition of transformations <me> * <me> * .......* <me>, theN time. if theN = 0 <me> = Identity if theN < 0 <me> = <me>.Inverse() *...........* <me>.Inverse(). More...
 
void Transforms (gp_XY &theCoord) const
 
gp_XY Transformed (const gp_XY &theCoord) const
 
void Transforms (Standard_Real &theX, Standard_Real &theY) const
 Applies this transformation to the coordinates: More...
 
gp_Trsf2d Trsf2d () const
 Converts this transformation into a gp_Trsf2d transformation. Exceptions Standard_ConstructionError if this transformation cannot be converted, i.e. if its form is gp_Other. More...
 

Detailed Description

Defines a non persistent transformation in 2D space. This transformation is a general transformation. It can be a gp_Trsf2d, an affinity, or you can define your own transformation giving the corresponding matrix of transformation.

With a gp_GTrsf2d you can transform only a doublet of coordinates gp_XY. It is not possible to transform other geometric objects because these transformations can change the nature of non-elementary geometric objects. A gp_GTrsf2d is represented with a 2 rows * 3 columns matrix:

V1 V2 T XY XY
| a11 a12 a14 | | x | | x'|
| a21 a22 a24 | | y | = | y'|
| 0 0 1 | | 1 | | 1 |
GLint GLint GLint GLint GLint x
Definition: OpenGl_GLESExtensions.hxx:132

where {V1, V2} defines the vectorial part of the transformation and T defines the translation part of the transformation. Warning A gp_GTrsf2d transformation is only applicable on coordinates. Be careful if you apply such a transformation to all the points of a geometric object, as this can change the nature of the object and thus render it incoherent! Typically, a circle is transformed into an ellipse by an affinity transformation. To avoid modifying the nature of an object, use a gp_Trsf2d transformation instead, as objects of this class respect the nature of geometric objects.

Constructor & Destructor Documentation

◆ gp_GTrsf2d() [1/3]

gp_GTrsf2d::gp_GTrsf2d ( )
inline

returns identity transformation.

◆ gp_GTrsf2d() [2/3]

gp_GTrsf2d::gp_GTrsf2d ( const gp_Trsf2d theT)
inline

Converts the gp_Trsf2d transformation theT into a general transformation.

◆ gp_GTrsf2d() [3/3]

gp_GTrsf2d::gp_GTrsf2d ( const gp_Mat2d theM,
const gp_XY theV 
)
inline

Creates a transformation based on the matrix theM and the vector theV where theM defines the vectorial part of the transformation, and theV the translation part.

Member Function Documentation

◆ Form()

gp_TrsfForm gp_GTrsf2d::Form ( ) const
inline

Returns the nature of the transformation. It can be an identity transformation, a rotation, a translation, a mirror transformation (relative to a point or axis), a scaling transformation, a compound transformation or some other type of transformation.

◆ Invert()

void gp_GTrsf2d::Invert ( )

◆ Inverted()

gp_GTrsf2d gp_GTrsf2d::Inverted ( ) const
inline

Computes the reverse transformation. Raised an exception if the matrix of the transformation is not inversible.

◆ IsNegative()

Standard_Boolean gp_GTrsf2d::IsNegative ( ) const
inline

Returns true if the determinant of the vectorial part of this transformation is negative.

◆ IsSingular()

Standard_Boolean gp_GTrsf2d::IsSingular ( ) const
inline

Returns true if this transformation is singular (and therefore, cannot be inverted). Note: The Gauss LU decomposition is used to invert the transformation matrix. Consequently, the transformation is considered as singular if the largest pivot found is less than or equal to gp::Resolution(). Warning If this transformation is singular, it cannot be inverted.

◆ Multiplied()

gp_GTrsf2d gp_GTrsf2d::Multiplied ( const gp_GTrsf2d theT) const
inline

Computes the transformation composed with theT and <me>. In a C++ implementation you can also write Tcomposed = <me> * theT. Example :

gp_GTrsf2d T1, T2, Tcomp; ...............
//composition :
Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
// transformation of a point
gp_XY P(10.,3.);
gp_XY P1(P);
Tcomp.Transforms(P1); //using Tcomp
gp_XY P2(P);
T1.Transforms(P2); //using T1 then T2
T2.Transforms(P2); // P1 = P2 !!!
Defines a non persistent transformation in 2D space. This transformation is a general transformation....
Definition: gp_GTrsf2d.hxx:53
void Transforms(gp_XY &theCoord) const
Definition: gp_GTrsf2d.hxx:309
gp_GTrsf2d Multiplied(const gp_GTrsf2d &theT) const
Computes the transformation composed with theT and <me>. In a C++ implementation you can also write T...
Definition: gp_GTrsf2d.hxx:171
This class describes a cartesian coordinate entity in 2D space {X,Y}. This class is non persistent....
Definition: gp_XY.hxx:30

◆ Multiply()

void gp_GTrsf2d::Multiply ( const gp_GTrsf2d theT)

◆ operator()()

Standard_Real gp_GTrsf2d::operator() ( const Standard_Integer  theRow,
const Standard_Integer  theCol 
) const
inline

◆ operator*()

gp_GTrsf2d gp_GTrsf2d::operator* ( const gp_GTrsf2d theT) const
inline

◆ operator*=()

void gp_GTrsf2d::operator*= ( const gp_GTrsf2d theT)
inline

◆ Power()

void gp_GTrsf2d::Power ( const Standard_Integer  theN)

◆ Powered()

gp_GTrsf2d gp_GTrsf2d::Powered ( const Standard_Integer  theN) const
inline

Computes the following composition of transformations <me> * <me> * .......* <me>, theN time. if theN = 0 <me> = Identity if theN < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().

Raises an exception if theN < 0 and if the matrix of the transformation is not inversible.

◆ PreMultiply()

void gp_GTrsf2d::PreMultiply ( const gp_GTrsf2d theT)

Computes the product of the transformation theT and this transformation, and assigns the result to this transformation: this = theT * this.

◆ SetAffinity()

void gp_GTrsf2d::SetAffinity ( const gp_Ax2d theA,
const Standard_Real  theRatio 
)

Changes this transformation into an affinity of ratio theRatio with respect to the axis theA. Note: An affinity is a point-by-point transformation that transforms any point P into a point P' such that if H is the orthogonal projection of P on the axis theA, the vectors HP and HP' satisfy: HP' = theRatio * HP.

◆ SetTranslationPart()

void gp_GTrsf2d::SetTranslationPart ( const gp_XY theCoord)

Replaces the translation part of this transformation by the coordinates of the number pair theCoord.

◆ SetTrsf2d()

void gp_GTrsf2d::SetTrsf2d ( const gp_Trsf2d theT)
inline

Assigns the vectorial and translation parts of theT to this transformation.

◆ SetValue()

void gp_GTrsf2d::SetValue ( const Standard_Integer  theRow,
const Standard_Integer  theCol,
const Standard_Real  theValue 
)
inline

Replaces the coefficient (theRow, theCol) of the matrix representing this transformation by theValue, Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3.

◆ SetVectorialPart()

void gp_GTrsf2d::SetVectorialPart ( const gp_Mat2d theMatrix)
inline

Replaces the vectorial part of this transformation by theMatrix.

◆ Transformed()

gp_XY gp_GTrsf2d::Transformed ( const gp_XY theCoord) const
inline

◆ Transforms() [1/2]

void gp_GTrsf2d::Transforms ( gp_XY theCoord) const
inline

◆ Transforms() [2/2]

void gp_GTrsf2d::Transforms ( Standard_Real theX,
Standard_Real theY 
) const
inline

Applies this transformation to the coordinates:

  • of the number pair Coord, or
  • X and Y.

Note:

  • Transforms modifies theX, theY, or the coordinate pair Coord, while
  • Transformed creates a new coordinate pair.

◆ TranslationPart()

const gp_XY& gp_GTrsf2d::TranslationPart ( ) const
inline

Returns the translation part of the GTrsf2d.

◆ Trsf2d()

gp_Trsf2d gp_GTrsf2d::Trsf2d ( ) const

Converts this transformation into a gp_Trsf2d transformation. Exceptions Standard_ConstructionError if this transformation cannot be converted, i.e. if its form is gp_Other.

◆ Value()

Standard_Real gp_GTrsf2d::Value ( const Standard_Integer  theRow,
const Standard_Integer  theCol 
) const
inline

Returns the coefficients of the global matrix of transformation. Raised OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3.

◆ VectorialPart()

const gp_Mat2d& gp_GTrsf2d::VectorialPart ( ) const
inline

Computes the vectorial part of the GTrsf2d. The returned Matrix is a 2*2 matrix.


The documentation for this class was generated from the following file: